RESUMO
The electrical activity of the brain, characterized by its frequency components, reflects a complex interplay between periodic (oscillatory) and aperiodic components. These components are associated with various neurophysiological processes, such as the excitation-inhibition balance (aperiodic activity) or interregional communication (oscillatory activity). However, we do not fully understand whether these components are truly independent or if different neuromodulators affect them in different ways. The dopaminergic system has a critical role for cognition and motivation, being a potential modulator of these power spectrum components. To improve our understanding of these questions, we investigated the differential effects of this system on these components using electrocorticogram recordings in cats, which show clear oscillations and aperiodic 1/f activity. Specifically, we focused on the effects of haloperidol (a D2 receptor antagonist) on oscillatory and aperiodic dynamics during wakefulness and sleep. By parameterizing the power spectrum into these two components, our findings reveal a robust modulation of oscillatory activity by the D2 receptor across the brain. Surprisingly, aperiodic activity was not significantly affected and exhibited inconsistent changes across the brain. This suggests a nuanced interplay between neuromodulation and the distinct components of brain oscillations, providing insights into the selective regulation of oscillatory dynamics in awake states.
Assuntos
Encéfalo , Haloperidol , Sono , Vigília , Vigília/efeitos dos fármacos , Vigília/fisiologia , Animais , Haloperidol/farmacologia , Sono/efeitos dos fármacos , Sono/fisiologia , Gatos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Masculino , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Eletrocorticografia/efeitos dos fármacos , Antagonistas de Dopamina/farmacologiaRESUMO
INTRODUCTION: Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS: We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS: Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS: These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.
Assuntos
Ritmo alfa , Atenção , Memória de Curto Prazo , Música , Ritmo Teta , Humanos , Memória de Curto Prazo/fisiologia , Atenção/fisiologia , Masculino , Feminino , Criança , Ritmo Teta/fisiologia , Ritmo alfa/fisiologia , Percepção Auditiva/fisiologia , Eletroencefalografia , Percepção Visual/fisiologia , Encéfalo/fisiologiaRESUMO
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Assuntos
Hipocampo , Convulsões , Ratos , Animais , Masculino , Hipocampo/patologia , Encéfalo , Córtex Pré-Frontal/fisiologia , Memória de Curto Prazo/fisiologiaRESUMO
Gamma oscillations are believed to underlie cognitive processes by shaping the formation of transient neuronal partnerships on a millisecond scale. These oscillations are coupled to the phase of breathing cycles in several brain areas, possibly reflecting local computations driven by sensory inputs sampled at each breath. Here, we investigated the mechanisms and functions of gamma oscillations in the piriform (olfactory) cortex of awake mice to understand their dependence on breathing and how they relate to local spiking activity. Mechanistically, we find that respiration drives gamma oscillations in the piriform cortex, which correlate with local feedback inhibition and result from recurrent connections between local excitatory and inhibitory neuronal populations. Moreover, respiration-driven gamma oscillations are triggered by the activation of mitral/tufted cells in the olfactory bulb and are abolished during ketamine/xylazine anesthesia. Functionally, we demonstrate that they locally segregate neuronal assemblies through a winner-take-all computation leading to sparse odor coding during each breathing cycle. Our results shed new light on the mechanisms of gamma oscillations, bridging computation, cognition, and physiology.
The cerebral cortex is the most recently evolved region of the mammalian brain. There, millions of neurons can synchronize their activity to create brain waves, a series of electric rhythms associated with various cognitive functions. Gamma waves, for example, are thought to be linked to brain processes which require distributed networks of neurons to communicate and integrate information. These waves were first discovered in the 1940s by researchers investigating brain areas involved in olfaction, and they are thought to be important for detecting and recognizing smells. Yet, scientists still do not understand how these waves are generated or what role they play in sensing odors. To investigate these questions, González et al. used a battery of computational approaches to analyze a large dataset of brain activity from awake mice. This revealed that, in the cortical region dedicated to olfaction, gamma waves arose each time the animals completed a breathing cycle that is, after they had sampled the air by breathing in. Each breath was followed by certain neurons relaying olfactory information to the cortex to activate complex cell networks; this included circuits of cells known as feedback interneurons, which can switch off weakly activated neurons, including ones that participated in activating them in the first place. The respiration-driven gamma waves derived from this 'feedback inhibition' mechanism. Further work then examined the role of the waves in olfaction. Smell identification relies on each odor activating a unique set of cortical neurons. The analyses showed that gamma waves acted to select and amplify the best set of neurons for representing the odor sensed during a sniff, and to quieten less relevant neurons. Loss of smell is associated with many conditions which affect the brain, such as Alzheimer's disease or COVID-19. By shedding light on the neuronal mechanisms that underpin olfaction, the work by González et al. could help to better understand how these impairments emerge, and how the brain processes other types of complex information.
Assuntos
Córtex Olfatório , Córtex Piriforme , Camundongos , Animais , Olfato/fisiologia , Bulbo Olfatório/fisiologia , Respiração , OdorantesRESUMO
Variations in human behavior correspond to the adaptation of the nervous system to different internal and environmental demands. Attention, a cognitive process for weighing environmental demands, changes over time. Pupillary activity, which is affected by fluctuating levels of cognitive processing, appears to identify neural dynamics that relate to different states of attention. In mice, for example, pupil dynamics directly correlate with brain state fluctuations. Although, in humans, alpha-band activity is associated with inhibitory processes in cortical networks during visual processing, and its amplitude is modulated by attention, conclusive evidence linking this narrowband activity to pupil changes in time remains sparse. We hypothesize that, as alpha activity and pupil diameter indicate attentional variations over time, these two measures should be comodulated. In this work, we recorded the electroencephalographic (EEG) and pupillary activity of 16 human subjects who had their eyes fixed on a gray screen for 1 min. Our study revealed that the alpha-band amplitude and the high-frequency component of the pupil diameter covariate spontaneously. Specifically, the maximum alpha-band amplitude was observed to occur â¼300 ms before the peak of the pupil diameter. In contrast, the minimum alpha-band amplitude was noted to occur â¼350 ms before the trough of the pupil diameter. The consistent temporal coincidence of these two measurements strongly suggests that the subject's state of attention, as indicated by the EEG alpha amplitude, is changing moment to moment and can be monitored by measuring EEG together with the diameter pupil.
Assuntos
Pupila , Vigília , Animais , Atenção/fisiologia , Eletroencefalografia , Humanos , Camundongos , Pupila/fisiologia , Percepção Visual , Vigília/fisiologiaRESUMO
N,N-Dimethyltryptamine (DMT) is a classic psychedelic capable of inducing short-lasting but profound changes in consciousness. As with other psychedelics, the experience induced by DMT strongly depends upon contextual factors, yet the neurobiological determinants of this variability remain unknown. The present study investigated changes in neural oscillations elicited by inhaled DMT, and whether baseline electroencephalography (EEG) recordings could predict the subjective effects reported by the participants. Healthy volunteers (N = 35) were measured with EEG before and during the acute effects of DMT consumed in a natural setting. Source-localized neural oscillations were correlated with the results of multiple questionnaires employed to assess the subjective effects of the drug. DMT resulted in a marked reduction of alpha and beta oscillations, and increased posterior spectral power in the delta, theta and gamma bands. The power of fronto-temporal theta oscillations was inversely correlated with scales indexing feelings of unity and transcendence, which are an integral part of the phenomenology of mystical-type experiences. The robustness of these results was supported using a machine learning model for regression trained and tested following a cross-validation procedure. These results are consistent with the observation that the state of mind prior to consuming a psychedelic drug influences the ensuing subjective experience of the user. They also suggest that baseline EEG screenings before administration of a serotonergic psychedelic could be useful to estimate the likelihood of inducing mystical-type experiences, previously linked to sustained positive effects in well-being and improved outcome of therapeutic interventions.
RESUMO
The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.