Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 241(8): 1577-1594, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627309

RESUMO

RATIONAL: Patients experience post-stroke cognitive impairment during aging. To date, no specific treatment solution has been reported for this disorder. OBJECTIVE: The purpose of this study was to evaluate the effects of exercise training and coenzyme Q10 supplementation on middle cerebral artery occlusion (MCAO) induced behavioral impairment, long-term potentiation inhibition and cerebral infarction size in aging rats. METHODS: Fifty aging male rats underwent MCAO surgery and were randomly distributed in to the following groups: 1-Sham, 2- control, 3- Coenzyme Q10, 4- Exercise training and 5- Exercise training with Q10 supplementation (Ex + Q10). Aerobic training groups were allowed to run on a treadmill for 12 weeks. Q10 (50 mg/kg) was administered intragastrically by gavage. Morris water maze, shuttle box and elevated plus maze tests were used to evaluate cognitive function. The population spike (PS) amplitude and slope of excitatory postsynaptic potentials (EPSP) in the dentate gyrus area were recorded as a result of perforant pathway electrical stimulation. RESULTS: Our study showed that Q10 and aerobic training alone ameliorate spatial memory in the acquisition phase, but have no effect on spatial memory in the retention phase. Q10 and exercise training synergistically promoted spatial memory in the retention phase. Q10 and exercise training separately and simultaneously mitigated cerebral ischemia-induced passive avoidance memory impairment in acquisition and retention phases. The EPSP did not differ between the groups, but exercise training and Q10 ameliorate the PS amplitude in hippocampal responses to perforant path stimulation. Exercising and Q10 simultaneously reduced the cerebral infarction volume. CONCLUSION: Collectively, the findings of the present study imply that 12 weeks of aerobic training and Q10 supplementation alone can simultaneously reverse cerebral ischemia induced neurobehavioral deficits via amelioration of synaptic plasticity and a reduction in cerebral infarction volume in senescent rats.


Assuntos
Envelhecimento , Hipocampo , Infarto da Artéria Cerebral Média , Potenciação de Longa Duração , Condicionamento Físico Animal , Ratos Sprague-Dawley , Ubiquinona , Animais , Masculino , Ratos , Potenciação de Longa Duração/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Envelhecimento/fisiologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/administração & dosagem , Aprendizagem em Labirinto/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos
2.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014183

RESUMO

Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin, Kindlin and beta-integrin. C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development associated with a neurodevelopmental disorder. Using neuron-specific, CRISPR loss-of-function strategies, we show that core adhesome components affect axon development and interact genetically with RPM-1. Mechanistically, Talin opposes RPM-1 in a functional 'tug-of-war' on growth cones that is required for accurate axon termination. Thus, our findings orthogonally validate the adhesome via multi-component genetic and physical interfaces with a key neuronal signaling hub and identify new links between the adhesome and brain disorders.

3.
Front Neurol ; 12: 749244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858313

RESUMO

Background: Preterm white matter injury (PWMI) is a common brain injury and a leading cause of life-long neurological deficits in premature infants; however, no effective treatment is available yet. This study aimed to investigate the fate and effectiveness of transplanted human oligodendrocyte progenitor cells (hOPCs) in a rat model of PWMI. Methods: Hypoxia-ischemia was induced in rats at postnatal day 3, and hOPCs (6 × 105 cells/5 µL) were intracerebroventricularly transplanted at postnatal day 7. Neurobehavior was assessed 12 weeks post-transplant using the CatWalk test and Morris water maze test. Histological analyses, as well as immunohistochemical and transmission electron microscopy, were performed after transcardial perfusion. Results: Transplanted hOPCs survived for 13 weeks in PWMI brains. They were widely distributed in the injured white matter, and migrated along the corpus callosum to the contralateral hemisphere. Notably, 82.77 ± 3.27% of transplanted cells differentiated into mature oligodendrocytes, which produced myelin around the axons. Transplantation of hOPCs increased the fluorescence intensity of myelin basic protein and the thickness of myelin sheaths as observed in immunostaining and transmission electron microscopy, while it reduced white matter atrophy at the level of gross morphology. With regard to neurobehavior, the CatWalk test revealed improved locomotor function and inter-paw coordination after transplantation, and the cognitive functions of hOPC-transplanted rats were restored as revealed by the Morris water maze test. Conclusions: Myelin restoration through the transplantation of hOPCs led to neurobehavioral improvements in PWMI rats, suggesting that transplanting hOPCs may provide an effective and promising therapeutic strategy in children with PWMI.

4.
Neurochem Int ; 129: 104490, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31226280

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) affecting more than 2.5 million individuals worldwide. In the present study, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice were treated with adenosine receptor A2A antagonist SCH58261 at different periods of EAE development. The administration of SCH58261 at 11-28 days post-immunization (d.p.i.) with MOG improved the neurological deficits. This time window corresponds to the therapeutic time window for MS treatment. SCH58261 significantly reduced the CNS neuroinflammation including reduced local infiltration of inflammatory cells, demyelination, and the numbers of macrophage/microglia in the spinal cord. Importantly, SCH58261 ameliorated the EAE-induced neurobehavioral deficits. By contrast, the SCH58261 treatment was ineffective when administered at the beginning of the onset of EAE (i.e., 1-10 d.p.i). The identification of the effective therapeutic window of A2A receptor antagonist provide insight into the role of A2A receptor signaling in EAE, and support SCH58261 as a candidate for the treatment of MS in human.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Encefalomielite Autoimune Experimental/prevenção & controle , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Pirimidinas/uso terapêutico , Receptores Adrenérgicos alfa 2/fisiologia , Triazóis/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Regulação para Baixo/efeitos dos fármacos , Esquema de Medicação , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Interferon gama/biossíntese , Interferon gama/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Bainha de Mielina/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Quadriplegia/etiologia , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Triazóis/administração & dosagem , Triazóis/farmacologia
5.
Toxicol Lett ; 305: 65-72, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711673

RESUMO

Perfluoroalkyl acids (PFAAs), as a group of industrial chemicals, are characterized by persistence, long-distance transmission, bioaccumulation and toxicity, and have been recognized as persistent organic pollutants. However, PFAAs and their related products have been used daily and in industrially products over the past several decades, which resulting in ubiquitous presence in various environmental medias, biota and even in human body. Numerous studies have investigated the neurobehavioral deficit and molecular mechanism underlying those effects of PFAAs in the last decades. In the present review, we summarized the neurotoxic effects of some PFAAs, especially perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). The potential molecular mechanism for PFAAs-induced neurotoxicity are mainly described in the following aspects: calcium homeostasis and its related signal pathway, synaptogenesis and synaptic plasticity, neurotransmitters, as well as the neural cells apoptosis. By concluding the current evidences, we hope to provide a further prospective to assess the association of environmental PFAAs exposure and neurotoxiology outcomes.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Fluorocarbonos/química , Animais , Apoptose , Cálcio/metabolismo , Neurônios/efeitos dos fármacos
6.
Cell Transplant ; 27(7): 1168-1177, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29978719

RESUMO

The effects of human oligodendrocyte progenitor (F3.olig2) cells on improving neurobehavioral deficits were investigated in an experimental model of periventricular leukomalacia (PVL). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide injection (HIL), and intracerebroventricularly transplanted with F3.olig2 (4 × 105 cells/rat) once at post-natal day (PND) 10 or repeatedly at PND10, 17, 27, and 37. Neurobehavioral disorders were evaluated at PND14, 20, 30, and 40 via cylinder test, locomotor activity, and rotarod performance, and cognitive function was evaluated at PND41-45 through passive avoidance and Morris water-maze performances. F3.olig2 cells recovered the rate of use of the forelimb contralateral to the injured brain, improved locomotor activity, and restored rotarod performance of PVL animals; in addition, marked improvement of learning and memory function was seen. It was confirmed that transplanted F3·olig2 cells migrated to injured areas, matured to oligodendrocytes expressing myelin basic protein (MBP), and markedly attenuated the loss of host MBP in the corpus callosum. The results indicate that the transplanted F3.olig2 cells restored neurobehavioral functions by preventing axonal demyelination, and that human oligodendrocyte progenitor cells could be a candidate for cell therapy of perinatal hypoxic-ischemic and infectious brain injuries including PVL and cerebral palsy.


Assuntos
Leucomalácia Periventricular/terapia , Células Precursoras de Oligodendrócitos/transplante , Animais , Animais Recém-Nascidos , Linhagem Celular , Cognição , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Feminino , Humanos , Leucomalácia Periventricular/fisiopatologia , Locomoção , Aprendizagem em Labirinto , Memória , Células Precursoras de Oligodendrócitos/citologia , Gravidez , Ratos , Ratos Sprague-Dawley
7.
Neurochem Int ; 100: 78-90, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27615061

RESUMO

Oxidative stress is one of the major etiological factors implicated in pathogenesis of neurodegenerative diseases. Since neurons are more sensitive to oxidative damage there is an increasing interest in developing novel antioxidant therapies, especially herbal preparations due to their safety profile and high efficiency. In this regard, the neuroprotective potential of a novel antioxidant compound, 4-hydroxyisophthalic acid (4-HIPA) isolated from aqueous extract of Decalepis hamiltonii roots was examined using transgenic Drosophila model of taupathy expressing wild-type and mutant forms of 2N4R isoform of human microtubule associated protein tau (MAPT). Taupathy model flies showed cognitive deficits in olfactory memory and deteriorated circadian rhythm of locomotory activities. Administration of 0.1 mg/ml 4-HIPA, markedly enhanced their olfactory memory performance and restored circadian rhythmicity of the transgenic flies locomotory behavior to the normal range. The mechanism of action that underlies 4-HIPA neuroprotection involves enhancement in efficiency of cellular antioxidant defense system by means of elevation in antioxidant enzyme activities and attenuation of oxidative stress. The molecule could positively affect the activity of neurotransmitter enzymes, which in turn enhances neuronal function and ameliorates the Tau-induced neurobehavioral deficits. Our findings showed that 4-HIPA can be considered as a suitable therapeutic candidate for drug development towards treatment of neurodegenerative disorders.


Assuntos
Apocynaceae/química , Ritmo Circadiano/efeitos dos fármacos , Memória/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Oxirredução/efeitos dos fármacos , Raízes de Plantas
8.
Hum Mutat ; 35(4): 470-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24449431

RESUMO

Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched-chain α-keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched-chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient-derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho-E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients' clinical phenotype. Based on these results, a protein-rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention.


Assuntos
Deficiências do Desenvolvimento/genética , Doenças do Sistema Nervoso/genética , Proteínas Quinases/genética , Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos de Cadeia Ramificada/sangue , Deficiências do Desenvolvimento/dietoterapia , Fibroblastos/enzimologia , Humanos , Masculino , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/dietoterapia , Pediatria , Proteínas Quinases/deficiência
9.
Chinese Herbal Medicines ; (4): 26-32, 2012.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-499738

RESUMO

The article reviewed the research progress of ligustilide in recent years and elaborated its pharmacological functions and mechanisms in detail,especially in ischemic brain injury.Its mechanism includes reducing cerebral infarct volumes and improving neurobehavioral deficits,anti-oxidant and anti-apoptosis,antithrombotic activity,calcium channel blockers function,and effect on erythropoietin.Other pharmacological effects of ligustilide including inhibiting vascular smooth muscle cell proliferation,anti-inflammatory and analgesic effects,effects on LPS-induced endotoxic shock,inhibiting constriction effect,suppression of the central nervous system,and ameliorating the memory impairment induced by scopolamine and so on,are also introduced.Ligustilide has potential pharmacological value,which provides a reference for its further research and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...