Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377285

RESUMO

Growing evidence suggests that activity-dependent gene expression is crucial for neuronal plasticity and behavioral experience. Enhancer RNAs (eRNAs), a class of long noncoding RNAs, play a key role in these processes. However, eRNAs are highly dynamic and are often present at lower levels than their corresponding mRNAs, making them difficult to detect using total RNA-seq techniques. Nascent RNA sequencing, which separates nascent RNAs from the steady-state RNA population, has been shown to increase the ability to detect activity-induced eRNAs with a higher signal-to-noise ratio. However, there is a lack of bioinformatic tools or pipelines for detecting eRNAs utilizing nascent RNA-seq and other multiomics data sets. In this study, we addressed this gap by developing a novel bioinformatic framework, e-finder, for finding eRNAs and have made it available to the scientific community. Additionally, we reanalyzed our previous nascent RNA sequencing data and compared them with total RNA-seq data to identify activity-regulated RNAs in neuronal cell populations. Using H3K27 acetylome data, we characterized activity-dependent eRNAs that drive the transcriptional activity of the target genes. Our analysis identified a subset of eRNAs involved in mediating synapse organization, which showed increased activity-dependent transcription after the potassium chloride stimulation. Notably, our data suggest that nascent RNA-seq with an enriched H3K27ac signal exhibits high resolution to identify potential eRNAs in response to membrane depolarization. Our findings uncover the role of the eRNA-mediated gene activation network in neuronal systems, providing new insights into the molecular processes characterizing neurological diseases.

2.
Front Neural Circuits ; 18: 1456558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323503

RESUMO

The brain can be seen as a self-organized dynamical system that optimizes information processing and storage capabilities. This is supported by studies across scales, from small neuronal assemblies to the whole brain, where neuronal activity exhibits features typically associated with phase transitions in statistical physics. Such a critical state is characterized by the emergence of scale-free statistics as captured, for example, by the sizes and durations of activity avalanches corresponding to a cascading process of information flow. Another phenomenon observed during sleep, under anesthesia, and in in vitro cultures, is that cortical and hippocampal neuronal networks alternate between "up" and "down" states characterized by very distinct firing rates. Previous theoretical work has been able to relate these two concepts and proposed that only up states are critical whereas down states are subcritical, also indicating that the brain spontaneously transitions between the two. Using high-speed high-resolution calcium imaging recordings of neuronal cultures, we test this hypothesis here by analyzing the neuronal avalanche statistics in populations of thousands of neurons during "up" and "down" states separately. We find that both "up" and "down" states can exhibit scale-free behavior when taking into account their intrinsic time scales. In particular, the statistical signature of "down" states is indistinguishable from those observed previously in cultures without "up" states. We show that such behavior can not be explained by network models of non-conservative leaky integrate-and-fire neurons with short-term synaptic depression, even when realistic noise levels, spatial network embeddings, and heterogeneous populations are taken into account, which instead exhibits behavior consistent with previous theoretical models. Similar differences were also observed when taking into consideration finite-size scaling effects, suggesting that the intrinsic dynamics and self-organization mechanisms of these cultures might be more complex than previously thought. In particular, our findings point to the existence of different mechanisms of neuronal communication, with different time scales, acting during either high-activity or low-activity states, potentially requiring different plasticity mechanisms.


Assuntos
Neurônios , Neurônios/fisiologia , Animais , Células Cultivadas , Modelos Neurológicos , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Ratos
3.
J Neurochem ; 165(2): 211-229, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807153

RESUMO

Astrotactin2 (ASTN2) regulates neuronal migration and synaptic strength through the trafficking and degradation of surface proteins. Deletion of ASTN2 in copy number variants has been identified in patients with schizophrenia, bipolar disorder, and autism spectrum disorder in copy number variant (CNV) analysis. Disruption of ASTN2 is a risk factor for these neurodevelopmental disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. However, the importance of ASTN2 in physiological functions remains poorly understood. To elucidate the physiological functions of ASTN2, we investigated whether deficiency of ASTN2 affects cognitive and/or emotional behaviors and neurotransmissions using ASTN2-deficient mice. Astn2 knockout (KO) mice produced by CRISPR/Cas9 technique showed no obvious differences in physical characteristics and circadian rhythm. Astn2 KO mice showed increased exploratory activity in a novel environment, social behavior and impulsivity, or decreased despair-, anxiety-like behaviors and exploratory preference for the novel object. Some behavioral abnormalities, such as increased exploratory activity and impulsivity, or decreased exploratory preference were specifically attenuated by risperidone, but not by haloperidol. While, the both drugs did not affect any emotion-related behavioral abnormalities in Astn2 KO mice. Dopamine contents were decreased in the striatum, and serotonin or dopamine turnover were increased in the striatum, nucleus accumbens, and amygdala of Astn2 KO mice. In morphological analyses, thinning of neural cell layers in the hippocampus, reduction of neural cell bodies in the prefrontal cortex, and decrease in spine density and PSD95 protein in both tissues were observed in Astn2 KO mice. The present findings suggest that ASTN2 deficiency develops some emotional or cognitive impairments related to monoaminergic dysfunctions and abnormal neuronal morphogenesis with shrinkage of neuronal soma. ASTN2 protein may contribute to the pathogenic mechanism and symptom onset of mental disorders.


Assuntos
Transtorno do Espectro Autista , Dopamina , Animais , Camundongos , Cognição , Dopamina/metabolismo , Emoções , Glicoproteínas/metabolismo , Camundongos Knockout , Morfogênese
4.
Biology (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922479

RESUMO

HuD (also known as ELAVL4) is an RNA-binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non-neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non-neuronal systems.

5.
Mil Med Res ; 7(1): 30, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527334

RESUMO

Neuronal networks, especially those in the central nervous system (CNS), evolved to support extensive functional capabilities while ensuring stability. Several physiological "brakes" that maintain the stability of the neuronal networks in a healthy state quickly become a hinderance postinjury. These "brakes" include inhibition from the extracellular environment, intrinsic factors of neurons and the control of neuronal plasticity. There are distinct differences between the neuronal networks in the peripheral nervous system (PNS) and the CNS. Underpinning these differences is the trade-off between reduced functional capabilities with increased adaptability through the formation of new connections and new neurons. The PNS has "facilitators" that stimulate neuroregeneration and plasticity, while the CNS has "brakes" that limit them. By studying how these "facilitators" and "brakes" work and identifying the key processes and molecules involved, we can attempt to apply these theories to the neuronal networks of the CNS to increase its adaptability. The difference in adaptability between the CNS and PNS leads to a difference in neuroregenerative properties and plasticity. Plasticity ensures quick functional recovery of abilities in the short and medium term. Neuroregeneration involves synthesizing new neurons and connections, providing extra resources in the long term to replace those damaged by the injury, and achieving a lasting functional recovery. Therefore, by understanding the factors that affect neuroregeneration and plasticity, we can combine their advantages and develop rehabilitation techniques. Rehabilitation training methods, coordinated with pharmacological interventions and/or electrical stimulation, contributes to a precise, holistic treatment plan that achieves functional recovery from nervous system injuries. Furthermore, these techniques are not limited to limb movement, as other functions lost as a result of brain injury, such as speech, can also be recovered with an appropriate training program.


Assuntos
Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Ferimentos e Lesões/complicações , Sistema Nervoso Central/fisiopatologia , Humanos , Fenômenos Fisiológicos/fisiologia , Ferimentos e Lesões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA