Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.351
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38971540

RESUMO

BACKGROUND: Mas-related G-protein coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE: We identified and characterized novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS: Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout (KO) and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in (KI) mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS: MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested, in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 KI mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSION: MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.

2.
Ageing Res Rev ; 99: 102372, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880342

RESUMO

Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.

3.
Sci Rep ; 14(1): 12807, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834718

RESUMO

The advent of the fourth industrial revolution, characterized by artificial intelligence (AI) as its central component, has resulted in the mechanization of numerous previously labor-intensive activities. The use of in silico tools has become prevalent in the design of biopharmaceuticals. Upon conducting a comprehensive analysis of the genomes of many organisms, it has been discovered that their tissues can generate specific peptides that confer protection against certain diseases. This study aims to identify a selected group of neuropeptides (NPs) possessing favorable characteristics that render them ideal for production as neurological biopharmaceuticals. Until now, the construction of NP classifiers has been the primary focus, neglecting to optimize these characteristics. Therefore, in this study, the task of creating ideal NPs has been formulated as a multi-objective optimization problem. The proposed framework, NPpred, comprises two distinct components: NSGA-NeuroPred and BERT-NeuroPred. The former employs the NSGA-II algorithm to explore and change a population of NPs, while the latter is an interpretable deep learning-based model. The utilization of explainable AI and motifs has led to the proposal of two novel operators, namely p-crossover and p-mutation. An online application has been deployed at https://neuropred.anvil.app for designing an ideal collection of synthesizable NPs from protein sequences.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Neuropeptídeos/genética , Neuropeptídeos/química , Desenho de Fármacos , Simulação por Computador , Aprendizado Profundo
4.
Pharmacol Rev ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914468

RESUMO

Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases such as epilepsy, neuropathic pain, psychosis, autism and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense, but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds and these internal cross-braces contribute to conotoxins having compact, well-defined structures and high stability. Of the conotoxins containing three disulfide bonds some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurological diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities and designed modifications, with a view towards expanding their applications. Significance Statement NaV channels are crucial in various neurological diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.

5.
Elife ; 122024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904987

RESUMO

Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.


Assuntos
Quinase do Linfoma Anaplásico , Sistema Nervoso Central , Proteínas de Drosophila , Animais , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Transdução de Sinais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Drosophila/genética , Drosophila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
6.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928010

RESUMO

The identification of novel drug targets in plant-parasitic nematodes (PPNs) is imperative due to the loss of traditional nematicides and a lack of replacements. Chemosensation, which is pivotal for PPNs in locating host roots, has become a focus in nematode behavioral research. However, its underlying molecular basis is still indistinct in such a diverse group of PPNs. To characterize genes participating in chemosensation in the Javanese root-knot nematode Meloidogyne javanica, RNA-sequencing of the second-stage juveniles (J2s) treated with tomato root exudate (TRE) for 1 h and 6 h was performed. Genes related to chemosensation in M. javanica mainly responded to TRE treatment at 1 h. Moreover, a gene ontology (GO) analysis underscored the significance of the neuropeptide G protein-coupled receptor signaling pathway. Consequently, the repertoire of putative neuropeptides in M. javanica, including FMRFamide-like peptides (FLPs), insulin-like peptides (ILPs), and neuropeptide-like peptides (NLPs), were outlined based on a homology analysis. The gene Mjflp-14a, harboring two neuropeptides, was significantly up-regulated at 1 h TRE treatment. Through peptide synthesis and J2 treatment, one of the two neuropeptides (MjFLP-14-2) was proven to influence the J2 chemotaxis towards tomato root tips. Overall, our study reinforces the potential of nematode neuropeptides as novel targets and tools for root-knot nematode control.


Assuntos
Neuropeptídeos , Raízes de Plantas , Solanum lycopersicum , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Quimiotaxia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
7.
Eur J Med Res ; 29(1): 317, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849920

RESUMO

The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.


Assuntos
Osso e Ossos , Encéfalo , Sistema Nervoso Central , Humanos , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Animais , Remodelação Óssea/fisiologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/metabolismo
8.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941607

RESUMO

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Assuntos
Neuroimunomodulação , Humanos , Animais , Intestinos/imunologia , Homeostase , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neurônios/metabolismo , Neurônios/imunologia , Neuropeptídeos/metabolismo , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo
9.
Mol Cell Endocrinol ; 590: 112265, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697385

RESUMO

The neuroendocrine system of crustaceans is complex and regulates many processes, such as development, growth, reproduction, osmoregulation, behavior, and metabolism. Once stimulated, crustaceans' neuroendocrine tissues modulate the release of monoamines, ecdysteroids, and neuropeptides that can act as hormones or neurotransmitters. Over a few decades, research has unraveled some mechanisms governing these processes, substantially contributing to understanding crustacean physiology. More aspects of crustacean neuroendocrinology are being comprehended with molecular biology, transcriptome, and genomics analyses. Hence, these studies will also significantly enhance the ability to cultivate decapods, such as crabs and shrimps, used as human food sources. In this review, current knowledge on crustacean endocrinology is updated with new findings about crustacean hormones, focusing mainly on the main neuroendocrine organs and their hormones and the effects of these molecules regulating metabolism, growth, reproduction, and color adaptation. New evidence about vertebrate-type hormones found in crustaceans is included and discussed. Finally, this review may assist in understanding how the emerging chemicals of environmental concern can potentially impair and disrupt crustacean's endocrine functions and their physiology.


Assuntos
Crustáceos , Sistemas Neurossecretores , Animais , Crustáceos/fisiologia , Crustáceos/metabolismo , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/fisiologia , Sistemas Neurossecretores/metabolismo , Reprodução/fisiologia
10.
Cell Rep ; 43(6): 114210, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787723

RESUMO

Hunger and satiety can have an influence on decision-making, sensory processing, and motor behavior by altering the internal state of the brain. This process necessitates the integration of peripheral sensory stimuli into the central nervous system. Here, we show how animals without a central nervous system such as the cnidarian Hydra measure and integrate satiety into neuronal circuits and which specific neuronal populations are involved. We demonstrate that this simple nervous system, previously referred to as diffuse, has an endodermal subpopulation (N4) similar to the enteric nervous system (feeding-associated behavior) and an ectodermal population (N3) that performs central nervous system-like functions (physiology/motor). This view of a supposedly simple nervous system could open an important window into the origin of more complex nervous systems.


Assuntos
Sistema Nervoso Central , Sistema Nervoso Entérico , Hydra , Neurônios , Animais , Hydra/fisiologia , Neurônios/fisiologia , Sistema Nervoso Entérico/fisiologia , Sistema Nervoso Central/fisiologia , Comportamento Animal/fisiologia , Resposta de Saciedade/fisiologia
11.
Neuropeptides ; 106: 102439, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788297

RESUMO

Heat stress (HS) is a global serious issue in the poultry industry with numerous adverse effects, including increased stress, depressed feed intake (FI), poor growth performance and higher mortality. Herbal adaptogens, plant extracts considered as stress response modifiers, are metabolic regulators that improve an organism's ability to adapt to and minimize damage from environmental stresses. Previously, we showed that herbal adaptogen supplementation increased FI and body weight (BW) of broiler (meat-type) chickens reared under HS conditions. Therefore, we hypothesized that these effects may be mediated through modulation of hypothalamic feeding-related neuropeptides. Male Cobb 500 chicks were reared in 12 environmental chambers with three diets: a corn-soybean-based diet (C) and two herbal adaptogen-supplemented diets at 500 g/1000 kg (NR-PHY-500) and 1 kg/1000 kg (NR-PHY-1000). Broilers in 9 chambers were exposed to chronic cyclic HS (35 °C for 8 h/day) from d29 to d42, while 3 chambers were maintained at 24 °C (thermoneutral, TN) for all 42 days. Hypothalamic samples were collected on d42 from each group, both before the onset of HS (Pre-HS) that day and after 3 h of HS (post-HS). Hypothalamic expressions of neuropeptide Y (NPY) receptors Y4 and Y7, Corticotropin-releasing hormone (CRH), orexin receptor 1 (ORXR1), melanocortin receptors (MC1R, MC4R, and MC5R), visfatin and neurosecretory protein GL (NPGL) genes were significantly upregulated by adaptogen supplementation. The hypothalamic expression of MC2R was affect by period, with a significant upregulation during post-HS phase. There was a significant period by treatment interaction for hypothalamic orexin and adiponectin expression. The hypothalamic expression of NPY, Y1, Y2, Y5, Y6, proopiomelanocortin (POMC), cocaine and amphetamine regulated transcript (CART), agouti-related peptide (AgRP), ORXR2, AdipR1/2, MC3R, and ghrelin was not affected by diet supplementation nor by HS exposure. In conclusion, these findings suggest that in-feed supplementation of adaptogen might improve FI and growth via modulation of hypothalamic feeding-related neuropeptides in heat-stressed broilers.


Assuntos
Galinhas , Suplementos Nutricionais , Hipotálamo , Neuropeptídeos , Animais , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Neuropeptídeos/metabolismo , Masculino , Ração Animal , Resposta ao Choque Térmico/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos
12.
J Neuroimmunol ; 391: 578366, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733741

RESUMO

Disturbance in neuroendocrine signaling has been consistently documented in multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS) representing the main cause of non-traumatic brain injury among young adults. In fact, MS patients display altered hormonal levels and psychiatric symptoms along with the pathologic hallmarks of the disease, which include demyelination, neuroinflammation and axonal injury. In addition, we have recently shown that extensive transcriptional changes take place in the hypothalamus of mice upon the MS model experimental autoimmune encephalomyelitis (EAE). We also detected structural and functional aberrancies in endocrine glands of EAE animals. Specifically, we described the hyperplasia of adrenal glands and the atrophy of ovaries at disease peak. To further expand the characterization of these phenotypes, here we profiled the transcriptomes of both glands by means of RNA-seq technology. Notably, we identified fatty acid and cholesterol biosynthetic pathways as the most dysregulated molecular processes in adrenals and ovaries, respectively. Furthermore, we demonstrated that key genes encoding neuropeptides and hormone receptors undergo distinct expression dynamics in the hypothalamus along disease progression. Altogether, our results corroborate the dysfunction of the neuroendocrine system as a major pathological event of autoimmune demyelination and highlight the crosstalk between the CNS and the periphery in mediating such disease phenotypes.


Assuntos
Encefalomielite Autoimune Experimental , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Metabolismo dos Lipídeos/fisiologia , Ovário/metabolismo , Ovário/patologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Transcriptoma
13.
ACS Appl Mater Interfaces ; 16(23): 29728-29736, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38804619

RESUMO

Methionine-enkephalin (Met-Enk) is an endogenous opioid peptide that is involved in various physiological processes including memory. A technological gap in the understanding of Met-Enk's role in memory is the lack of rapid measurement tools to selectively quantify Met-Enk concentrations in situ. Here, we integrate molecularly imprinted polymers (MIPs) with carbon fiber microelectrodes (CFMs) to selectively detect Met-Enk by using fast-scan cyclic voltammetry (FSCV). We report two MIP conditions that yield 2-fold and 5-fold higher selectivity toward Met-Enk than the tyrosine-containing hexapeptide fragment angiotensin II (3-8). We demonstrate that MIP technology can be combined with FSCV at CFMs to create rapid and selective sensors for Met-Enk. This technology is a promising platform for creating selective sensors for other peptides and biomarkers.


Assuntos
Fibra de Carbono , Técnicas Eletroquímicas , Encefalina Metionina , Microeletrodos , Fibra de Carbono/química , Encefalina Metionina/análise , Encefalina Metionina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Impressão Molecular , Polímeros Molecularmente Impressos/química , Carbono/química
14.
Biomolecules ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785946

RESUMO

This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Nociceptividade , Dor , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Dor/metabolismo , Dor/tratamento farmacológico , Animais , Plasticidade Neuronal
15.
Neuroscientist ; : 10738584241245307, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602223

RESUMO

Almost every facet of our behavior and physiology varies predictably over the course of day and night, anticipating and adapting us to their associated opportunities and challenges. These rhythms are driven by endogenous biological clocks that, when deprived of environmental cues, can continue to oscillate within a period of approximately 1 day, hence circa-dian. Normally, retinal signals synchronize them to the cycle of light and darkness, but disruption of circadian organization, a common feature of modern lifestyles, carries considerable costs to health. Circadian timekeeping pivots around a cell-autonomous molecular clock, widely expressed across tissues. These cellular timers are in turn synchronized by the principal circadian clock of the brain: the hypothalamic suprachiasmatic nucleus (SCN). Intercellular signals make the SCN network a very powerful pacemaker. Previously, neurons were considered the sole SCN timekeepers, with glial cells playing supportive roles. New discoveries have revealed, however, that astrocytes are active partners in SCN network timekeeping, with their cell-autonomous clock regulating extracellular glutamate and GABA concentrations to control circadian cycles of SCN neuronal activity. Here, we introduce circadian timekeeping at the cellular and SCN network levels before focusing on the contributions of astrocytes and their mutual interaction with neurons in circadian control in the brain.

16.
Korean J Pain ; 37(2): 151-163, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557656

RESUMO

Background: Galangin, commonly employed in traditional Chinese medicine for its diverse medicinal properties, exhibits potential in treating inflammatory pain. Nevertheless, its mechanism of action remains unclear. Methods: Mice were randomly divided into 4 groups for 7 days: a normal control group, a galangin-treated (25 and 50 mg/kg), and a positive control celecoxib (20 mg/kg). Analgesic and anti-inflammatory effects were evaluated using a hot plate test, acetic acid-induced writhing test, acetic acid-induced vascular permeability test, formalininduced paw licking test, and carrageenan-induced paw swelling test. The interplay between galangin, transient receptor potential vanilloid 1 (TRPV1), NF-κB, COX-2, and TNF-α proteins was evaluated via molecular docking. COX- 2, PGE2, IL-1ß, IL-6, and TNF-α levels in serum were measured using ELISA after capsaicin administration (200 nmol/L). TRPV1 expression in the dorsal root ganglion was analyzed by Western blot. The quantities of substance P (SP) and calcitonin gene-related peptide (CGRP) were assessed using qPCR. Results: Galangin reduced hot plate-induced licking latency, acetic acid-induced contortions, carrageenantriggered foot inflammation, and capillary permeability in mice. It exhibited favorable affinity towards TRPV1, NF- κB, COX-2, and TNF-α, resulting in decreased levels of COX-2, PGE2, IL-1ß, IL-6, and TNF-α in serum following capsaicin stimulation. Galangin effectively suppressed the upregulation of TRPV1 protein and associated receptor neuropeptides CGRP and SP mRNA, while concurrently inhibiting the expression of NF-κB, TNF-α, COX-2, and PGE2 mRNA. Conclusions: Galangin exerts its anti-inflammatory pain effects by inhibiting TRPV1 activation and regulating COX-2, NF-κB/TNF-α expression, providing evidence for the use of galangin in the management of inflammatory pain.

17.
BMC Ophthalmol ; 24(1): 155, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594682

RESUMO

INTRODUCTION: In recent years, insulin eye drops have attracted increasing attention from researchers and ophthalmologists. The aim of this study was to investigate the efficacy and possible mechanism of action of insulin eye drops in diabetic mice with corneal wounds. METHODS: A type 1 diabetes model was induced, and a corneal epithelial injury model of 2.5 mm was established. We used corneal fluorescein staining, hematoxylin-eosin (H-E) staining and the Cochet-Bonnet esthesiometer to examine the process of wound healing. Subsequently, the expression levels of Ki-67, IL-1ß, ß3-tubulin and neuropeptides, including substance P (SP) and calcitonin gene-related peptide (CGRP), were examined at 72 h after corneal injury. RESULTS: Fluorescein staining demonstrated an acceleration of the recovery of corneal epithelial injury in diabetic mice compared with the saline treatment, which was further evidenced by the overexpression of Ki-67. Moreover, 72 h of insulin application attenuated the expression of inflammatory cytokines and neutrophil infiltration. Remarkably, the results demonstrated that topical insulin treatment enhanced the density of corneal epithelial nerves, as well as neuropeptide SP and CGRP release, in the healing cornea via immunofluorescence staining. CONCLUSIONS: Our results indicated that insulin eye drops may accelerate corneal wound healing and decrease inflammatory responses in diabetic mice by promoting nerve regeneration and increasing levels of neuropeptides SP and CGRP.


Assuntos
Lesões da Córnea , Diabetes Mellitus Experimental , Epitélio Corneano , Ceratite , Camundongos , Animais , Epitélio Corneano/metabolismo , Insulina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Soluções Oftálmicas , Antígeno Ki-67/metabolismo , Córnea/fisiologia , Lesões da Córnea/tratamento farmacológico , Cicatrização , Ceratite/metabolismo , Fluoresceína/metabolismo , Inflamação/metabolismo
18.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597092

RESUMO

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Assuntos
Neuropeptídeos , Rhodnius , Triatoma , Animais , Rhodnius/genética , Rhodnius/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transcriptoma , Muda
19.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612683

RESUMO

The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.


Assuntos
Transtorno Depressivo Maior , Neuropeptídeos , Humanos , Dopamina , Área Tegmentar Ventral , Neurotransmissores
20.
Methods Mol Biol ; 2757: 147-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668965

RESUMO

Ctenophores or comb jellies are representatives of an enigmatic lineage of early branching metazoans with complex tissue and organ organization. Their biology and even microanatomy are not well known for most of these fragile pelagic and deep-water species. Here, we present immunohistochemical protocols successfully tested on more than a dozen ctenophores. This chapter also illustrates neural organization in several reference species of the phylum (Pleurobrachia bachei, P. pileus, Mnemiopsis leidyi, Bolinopsis microptera, Beroe ovata, and B. abyssicola) as well as numerous ciliated structures in different functional systems. The applications of these protocols illuminate a very complex diversification of cell types comparable to many bilaterian lineages.


Assuntos
Ctenóforos , Imuno-Histoquímica , Animais , Ctenóforos/anatomia & histologia , Imuno-Histoquímica/métodos , Neuroanatomia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...