RESUMO
AbstractAlthough many studies have shown that species richness increases from high to low latitudes (the latitudinal diversity gradient), the mechanisms responsible for generating and maintaining higher species richness in the tropics remain intensely debated. Here we investigate how the effects of temperature on speciation rates (kinetic effects) and the effects of productivity on community size (chemical effects) explain the latitudinal diversity gradient of South American small mammals. We implemented Bayesian models that integrate processes from the neutral and metabolic theories, comparing model predictions with empirical richness patterns. The neutral-metabolic model predicted the latitudinal richness gradient in South American small mammals. We found evidence that the effects of productivity on community size are more important for explaining differences in species richness than the effects of temperature on speciation rates. These results suggest that differences in species richness along latitudinal gradients are regulated primarily by the chemical effects of productivity on speciation-extinction dynamics.
Assuntos
Biodiversidade , Especiação Genética , Animais , Teorema de Bayes , Mamíferos , América do SulRESUMO
Neutral theory proposes that dispersal stochasticity is one of the main drivers of local diversity. Haplotypes-level genetic variation can now be efficiently sampled from across whole communities, thus making it possible to test neutral predictions from the genetic to species-level diversity, and higher. However, empirical data is still limited, with the few studies to date coming from temperate latitudes. Here, we focus on a tropical mountain within the Transmexican Volcanic Belt to evaluate spatially fine-scale patterns of arthropod community assembly to understand the role of dispersal limitation and landscape features as drivers of diversity. We sampled whole-communities of arthropods for eight orders at a spatial scale ranging from 50 m to 19 km, using whole community metabarcoding. We explored multiple hierarchical levels, from individual haplotypes to lineages at 0.5, 1.5, 3, 5, and 7.5% similarity thresholds, to evaluate patterns of richness, turnover, and distance decay of similarity with isolation-by-distance and isolation-by-resistance (costs to dispersal given by landscape features) approaches. Our results showed that distance and altitude influence distance decay of similarity at all hierarchical levels. This holds for arthropod groups of contrasting dispersal abilities, but with different strength depending on the spatial scale. Our results support a model where local-scale differentiation mediated by dispersal constraints, combined with long-term persistence of lineages, is an important driver of diversity within tropical sky islands.
Assuntos
Artrópodes , Biodiversidade , Altitude , Animais , Ecossistema , HaplótiposRESUMO
Understanding the role of species traits in mediating ecological interactions and shaping community structure is a key question in ecology. In this sense, parasite population parameters allow us to estimate the functional importance of traits in shaping the strength of interactions among hosts and parasites in a network. The aim of this study was to survey and analyse the small mammal-helminth network in a forest reserve of the Brazilian Atlantic Forest in order to understand (i) how functional traits (type of parasite life cycle, site of infection in their host, host and parasite body length, host diet, host locomotor habit and host activity period) and abundance influence hostparasite interactions, (ii) whether these traits explain species roles, and (iii) if this relationship is consistent across different parasite population parameters (presence and absence, mean abundance and prevalence). Networks were modular and their structural patterns did not vary among the population parameters. Functional traits and abundance shaped the interactions observed between parasites and hosts. Host species abundance, host diet and locomotor habit affected their centrality and/or vulnerability to parasites. For helminths, infection niche was the main trait determining their central roles in the networks.
Assuntos
Helmintíase Animal/parasitologia , Helmintos/fisiologia , Marsupiais/parasitologia , Doenças dos Roedores/parasitologia , Animais , Brasil/epidemiologia , Didelphis/parasitologia , Helmintíase Animal/epidemiologia , Helmintos/anatomia & histologia , Helmintos/classificação , Interações Hospedeiro-Parasita , Doenças dos Roedores/epidemiologia , RoedoresRESUMO
Despite extensive focus on numerous mechanisms that potentially structure Neotropical bat communities, understanding of the relative importance of any is still illusive. Recently, it has been demonstrated that all mechanisms used to explain community organization can be conceptualized as one or a combination of the few higher-level processes of dispersal, drift, selection and speciation. These four higher-level processes have not been addressed equally by Neotropical bat community ecologists. In particular, predictions formulated from a hypothesis of ecological drift have not been tested for any Neotropical bat community. Herein we contrast efficacy of predictions based on the higher-level processes of drift and selection in describing community structure of bats in the Atlantic Forest of eastern Paraguay. Predictions apply to species-environment interactions, patterns of trait variation and beta-diversity, predictability of dominant competitors and responses to seasonality. At best, there was inconsistent support for the operation of either drift or selection within this bat community. Selection, however, had more various forms of support including strong species-environment relationships, predictable patterns of dominant competitors and strong responses to seasonality. Despite stronger support for selection, a number of predictions of drift were supported as well. It is likely that a combination of both of these processes operates across the variable environments experienced in Atlantic Forest. Predictions of both processes are difficult to make operational. Support for drift often comes from failure to demonstrate a significant pattern and should not be considered strong support of a prediction. Similarly, many predictions of selection predict phenotypic patterns among species without specifying a particular trait. This is problematic because the phenotype is multifaceted and a lack of pattern in one measured trait might mask a strong pattern in some other unmeasured trait. Distilling mechanisms of community organization into four higher level processes is a substantial innovation in community ecology. Nonetheless, efforts need to be made to develop a suite of mutually exclusive and falsifiable predictions to facilitate future and more rapid understanding of community organization.
Assuntos
Quirópteros , Animais , Florestas , ParaguaiRESUMO
Forest-to-agriculture conversion has been identified as a major threat to soil biodiversity and soil processes resilience, although the consequences of long-term land use change to microbial community assembly and ecological processes have been often neglected. Here, we combined metagenomic approach with a large environmental dataset, to (i) identify the microbial assembly patterns and, (ii) to evaluate the ecological processes governing microbial assembly, in bulk soil and soybean rhizosphere, along a long-term forest-to-agriculture conversion chronosequence, in Eastern Amazon. We hypothesized that (i) microbial communities in bulk soil and rhizosphere have different assembly patterns and (ii) the weight of the four ecological processes governing assembly differs between bulk soil and rhizosphere and along the chronosequence in the same fraction. Community assembly in bulk soil fitted most the zero-sum multinomial (ZSM) neutral-based model, regardless of time. Low to intermediate dispersal was observed. Decreasing influence of abiotic factors was counterbalanced by increasing influence of biotic factors, as the chronosequence advanced. Undominated ecological processes of dispersal limitation and variable selection governing community assembly were observed in this soil fraction. For soybean rhizosphere, community assembly fitted most the lognormal niche-based model in all chronosequence areas. High dispersal and an increasing influence of abiotic factors coupled with a decreasing influence of biotic factors were found along the chronosequence. Thus, we found a dominant role of dispersal process governing microbial assembly with a secondary effect of homogeneous selection process, mainly driven by decreasing aluminum and increased cations saturation in soil solution, due to long-term no-till cropping. Together, our results indicate that long-term no-till lead community abundances in bulk soil to be in a transient and conditional state, while for soybean rhizosphere, community abundances reach a periodic and permanent distribution state. Dominant dispersal process in rhizosphere, coupled with homogeneous selection, brings evidences that soybean root system selects microbial taxa via trade-offs in order to keep functional resilience of soil processes.
Assuntos
Bactérias/isolamento & purificação , Microbiota , Microbiologia do Solo , Agricultura , Bactérias/classificação , Bactérias/genética , Biodiversidade , Florestas , Filogenia , Rizosfera , Glycine max/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimentoRESUMO
Abstract: In recent years there has been increasing attention in patterns of β-diversity and mechanisms related to variations in species composition. In this study, we evaluated beta diversity patterns of bromeliads growing on cliffs immersed in Atlantic Forest. We hypothesized that the species composition varies according to the spatial scale, inferring that there is a replacement of species influenced mainly by environmental factors. The study was carried out on sandstone cliffs included in contiguous but distinct vegetation formations: Evergreen and Seasonal forests. Twenty-four vertical rocky outcrops were sampled. The spatial variation in species composition was evaluated by two β-diversity components, turnover and nestedness. Multivariate analysis and variation partitioning were performed to distinguish niche and stochastic processes. We recorded 26 bromeliad species and a significantly higher contribution of turnover explaining beta diversity. Environmental factors affect β-diversity patterns of Bromeliaceae. However, individually, the environmental predictors do not explain the data variation. Environmental variations spatially structured, and spatial variables determinate the dissimilarity in the composition of bromeliads on cliffs. Thus, our results revealed that both environmental and spatial effects can act together to define the floristic composition of rock-dwelling bromeliad communities.
Resumo: Nos últimos anos tem havido uma crescente atenção em relação aos padrões de diversidade β e aos mecanismos relacionados às variações na composição de espécies. Neste estudo, nós avaliamos os padrões de diversidade beta de bromélias crescendo em escarpas rochosas imersas em matriz de Floresta Atlântica. Hipotetizamos que a composição das espécies varia de acordo com a escala espacial, inferindo que há uma substituição de espécies influenciadas principalmente por fatores ambientais. O estudo foi realizado em escarpas areníticas inseridas em formações vegetacionais contíguas, mas distintas: Florestas Ombrófila e Estacional. Vinte e quatro afloramentos rochosos verticais foram amostrados. A variação espacial na composição de espécies foi avaliada por dois componentes de diversidade β, turnover e aninhamento. Análise multivariada e particionamento da variação foram realizados para distinguir processos de nicho e estocásticos. Registramos 26 espécies de bromélias, com uma contribuição significativamente maior do turnover explicando a diversidade beta. Os fatores ambientais afetam os padrões de diversidade β de Bromeliaceae, no entanto, individualmente, esses preditores não explicam a variação dos dados. Assim, variações espaciais e variações ambientais espacialmente estruturadas determinam a dissimilaridade na composição de bromélias nas escarpas avaliadas. Desse modo, tanto os fatores ambientais determinísticos quanto os efeitos espaciais podem atuar em conjunto para definir a composição florística das comunidades de bromélias que se estabelecem sobre rochas.
RESUMO
The evaluation of the effects of environmental factors on natural communities has been one of the principal approaches in ecology; although, over the past decade, increasing importance has been given to spatial factors. In this context, we evaluated the relative importance of environmental and spatial factors for the structuring of the local odonate communities in preserved and altered streams. Adult Odonata were sampled in 98 streams in eastern Amazonia, Brazil. The physical features of each stream were evaluated and spatial variables were generated. Only environmental factors accounted for the variation in the Odonata community. The same pattern was observed in the suborder Zygoptera. For Anisoptera, environmental factors alone affect the variation in the community, considering all the environments together, and the altered areas on their own. As the two Odonata suborders presented distinct responses to environmental factors, this partitioning may contribute to an improvement in the precision of studies in biomonitoring. We thus suggest that studies would have a greater explanatory potential if additional variables are included, related to biotic interactions (e.g., competition). This will require further investigation on a finer scale of environmental variation to determine how the Odonata fauna of Amazonian streams behaves under this analytical perspective.
RESUMO
Theoretical studies of ecosystem models have generally concluded that large numbers of species will not stably coexist if the species are all competing for the same limited set of resources. Here, we describe a simple multi-trait model of competition where the presence of N resources will lead to the stable coexistence of up to 2 N species. Our model also predicts that the long-term dynamics of the population will lie on a neutral attractor hyperplane. When the population shifts within the hyperplane, its dynamics will behave neutrally, while shifts which occur perpendicular to the hyperplane will be subject to restoring forces. This provides a potential explanation of why complex ecosystems might exhibit both niche-like and neutral responses to perturbations. Like the neutral theory of biodiversity, our model generates good fits to species abundance distributions in several datasets but does so without needing to evoke inter-generational stochastic effects, continuous species creation or immigration dynamics. Additionally, our model is able to explain species abundance correlations between independent but similar ecosystems separated by more than 1400 km inside the Amazonian forests.
Assuntos
Biodiversidade , Ecossistema , Florestas , Modelos Biológicos , América do SulRESUMO
Over the past decade, the neutral theory of biodiversity has stirred up community assembly theory considerably by suggesting that stochasticity in the form of ecological drift is an important factor determining community composition and community turnover. The neutral theory assumes that all species within a community are functionally equivalent (the neutrality assumption), and therefore applies best to communities of trophically similar species. Evidently, trophically similar species may still differ in dispersal ability, and therefore may not be completely functionally equivalent. Here we present a new sampling formula that takes into account the partitioning of a community into two guilds that differ in immigration rate. We show that, using this sampling formula, we can accurately detect a subdivision into guilds from species abundance distributions, given ecological data about dispersal ability. We apply our sampling formula to tropical tree data from Barro Colorado Island, Panama. Tropical trees are divided depending on their dispersal mode, where biotically dispersed trees are grouped as one guild, and abiotically dispersed trees represent another guild. We find that breaking neutrality by adding guild structure to the neutral model significantly improves the fit to data and provides a better understanding of community assembly on BCI. Our findings are thus an important step towards an integration of neutral and niche theory.