Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
Phytochemistry ; : 114208, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972441

RESUMO

Acanthopanacis cortex (the dried root bark of Acanthopanax gracilistylus W. W. Smith) has been used for the treatment of rheumatic diseases in China for over 2000 years. Four previously undescribed lignans (1-4) and 12 known lignans (5-16) were isolated from Acanthopanacis cortex. In this study, the inhibitory activities of compounds 1-16 against neutrophil elastase (NE), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) are reported. The results show that compounds 1-16 exhibit weak inhibitory activities against NE and COX-1. However, compounds 2, 6∼8 and 13∼16 demonstrate better COX-2 inhibitory effects with IC50 values from 0.75 to 8.17 µΜ. These findings provide useful information for the search for natural selective COX-2 inhibitors.

2.
Biomedicines ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927413

RESUMO

Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition with global implications. Accurate and timely diagnosis is critical; however, traditional diagnostic methods (based on spirometry) show limitations, prompting the search for predictive biomarkers and modern diagnostic techniques. This study explored the validation of COPD-related biomarkers (C-reactive protein, procalcitonin, neutrophil elastase, and alpha-1 antitrypsin) in saliva. A diverse cohort, including healthy non-smokers, healthy smokers, and COPD patients of Polish origin, underwent spirometry and marker analysis. The data correlated with clinical factors, revealing noteworthy relations. Firstly, salivary biomarker levels were compared with serum concentrations, demonstrating notable positive or negative correlations, depending on the factor. Further analysis within healthy individuals revealed associations between biomarker levels, spirometry, and clinical characteristics such as age, sex, and BMI. Next, COPD patients exhibited an enhanced concentration of biomarkers compared to healthy groups. Finally, the study introduced a breathing assessment survey, unveiling significant associations between self-perceived breathing and spirometric and tested parameters. Outcomes emphasized the relevance of subjective experiences in COPD research. In conclusion, this research underscored the potential of salivary biomarkers as diagnostic tools for COPD, offering a non-invasive and accessible alternative to traditional methods. The findings paved the way for improved modern diagnostic approaches.

3.
Discov Oncol ; 15(1): 167, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750338

RESUMO

Neutrophil elastase (NE) is a proteolytic enzyme released extracellular during the formation of neutrophil extracellular traps (NETs) through degranulation. In addition to participating in the body's inflammatory response, NE also plays an important role in cancer. It can promote tumor proliferation, migration, and invasion, induce epithelial-mesenchymal transition (EMT), and change the tumor microenvironment (TME) to promote tumor progression. Concurrently, NE promotes systemic treatment resistance by inducing EMT. However, it can also selectively kill cancer cells and attenuate tumor development. Sivelestat is a specific NE inhibitor that can be used in the perioperative period of esophageal cancer patients to reduce the incidence of postoperative complications after esophagectomy. In addition, the combination of sivelestat and trastuzumab can enhance the efficacy of human epidermal growth factor receptor 2(HER 2) positive breast cancer patients. Meanwhile, targeting the human antibody domains and fragments of NE is also a new way to treat cancer and inflammation-related diseases. This review provides valuable insights into the role of NE in cancer treatment. Additionally, we discuss the challenges associated with the clinical application of sivelestat. By shedding light on the promising potential of NE, this review contributes to the advancement of cancer treatment strategies.

4.
Phytomedicine ; 129: 155685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696922

RESUMO

BACKGROUND: The genus Cytinus, recognised as one of the most enigmatic in the plant kingdom, has garnered attention for its bioactive potential, particularly its skin anti-ageing properties. Despite this recognition, much remains to be accomplished regarding deciphering and isolating its most active compounds. HYPOTHESIS: This study aimed to identify the compounds responsible for C. hypocistis skin anti-ageing potential. METHODS: Using multivariate analysis, a biochemometric approach was applied to identify the discriminant metabolites by integrating extracts' chemical profile (Liquid Chromatography-High-Resolution Mass Spectrometry, LCHRMS) and bioactive properties. The identified bioactive metabolite was structurally elucidated by 1D and 2D Nuclear Magnetic Resonance (NMR). RESULTS: Among the studied bioactivities, the anti-elastase results exhibited a significant variation among the samples from different years. After the biochemometric analysis, the compound 2,3:4,6-bis(hexahydroxydiphenoyl)glucose, with a molecular mass of 784.075 Da, was structurally elucidated as the discriminant feature responsible for the outstanding human neutrophil elastase inhibition. Remarkably, the subfraction containing this compound exhibited a tenfold improvement in neutrophil elastase inhibition efficacy compared to the crude extract; its effectiveness fell within the same range as SPCK, a potent irreversible neutrophil elastase inhibitor. Moreover, this subfraction displayed no cytotoxicity or phototoxicity and excellent efficacy for the tested anti-ageing properties. CONCLUSIONS: Hydrolysable tannins were confirmed as the metabolites behind C. hypocistis skin anti-ageing properties, effectively mitigating critical molecular mechanisms that influence the phenotypically distinct ageing clinical manifestations. Pedunculagin was particularly effective in inhibiting neutrophil elastase, considered one of the most destructive enzymes in skin ageing.


Assuntos
Extratos Vegetais , Envelhecimento da Pele , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Envelhecimento da Pele/efeitos dos fármacos , Elastase de Leucócito/metabolismo , Pele/efeitos dos fármacos
5.
Cell Mol Immunol ; 21(7): 707-722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789529

RESUMO

B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.


Assuntos
Homeostase , Neutrófilos , Sepse , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Sepse/imunologia , Animais , Humanos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Movimento Celular , Camundongos , Camundongos Endogâmicos C57BL , Elastase de Leucócito/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B
6.
Precis Clin Med ; 7(2): pbae008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699382

RESUMO

Objectives: Elevated circulating DNA (cirDNA) concentrations were found to be associated with trauma or tissue damage which suggests involvement of inflammation or cell death in post-operative cirDNA release. We carried out the first prospective, multicenter study of the dynamics of cirDNA and neutrophil extracellular trap (NETs) markers during the perioperative period from 24 h before surgery up to 72 h after curative surgery in cancer patients. Methods: We examined the plasma levels of two NETs protein markers [myeloperoxidase (MPO) and neutrophil elastase (NE)], as well as levels of cirDNA of nuclear (cir-nDNA) and mitochondrial (cir-mtDNA) origin in 29 colon, prostate, and breast cancer patients and in 114 healthy individuals (HI). Results: The synergistic analytical information provided by these markers revealed that: (i) NETs formation contributes to post-surgery conditions; (ii) post-surgery cir-nDNA levels were highly associated with NE and MPO in colon cancer [r = 0.60 (P < 0.001) and r = 0.53 (P < 0.01), respectively], but not in prostate and breast cancer; (iii) each tumor type shows a specific pattern of cir-nDNA and NETs marker dynamics, but overall the pre- and post-surgery median values of cir-nDNA, NE, and MPO were significantly higher in cancer patients than in HI. Conclusion: Taken as a whole, our work reveals the association of NETs formation with the elevated cir-nDNA release during a cancer patient's perioperative period, depending on surgical procedure or cancer type. By contrast, cir-mtDNA is poorly associated with NETs formation in the studied perioperative period, which would appear to indicate a different mechanism of release or suggest mitochondrial dysfunction.

7.
Bull Exp Biol Med ; 176(5): 585-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724813

RESUMO

Leukocyte elastase is a marker of inflammation. Previously, a relationship was found between the severity of mental disorders in patients and elastase-like activity of blood plasma. The effect of various neurotropic drugs on leukocyte elastase activity was analyzed in an in vitro experiment. We revealed an inhibitory effect of the benzodiazepine tranquilizers diazepam and bromodihydrochlorophenylbenzodiazepine and immunomodulators aminodihydrophthalazinedione and diclofenac on the plasma elastase-like activity of healthy donors and pure human neutrophil elastase. The antipsychotics chlorpromazine and alimemazine, as well as the nootropic vinpocetine increased elastase-like activity in a dose-dependent manner. The activating effect of chlorpromazine and vinpocetine, but not alimemazine, was reproduced in neutrophil elastase. We hypothesized that these drugs can affect the development of inflammatory reactions in the complex therapy of mental disorders.


Assuntos
Antipsicóticos , Clorpromazina , Diazepam , Elastase de Leucócito , Humanos , Elastase de Leucócito/metabolismo , Clorpromazina/farmacologia , Diazepam/farmacologia , Antipsicóticos/farmacologia , Diclofenaco/farmacologia , Nootrópicos/farmacologia , Tranquilizantes/farmacologia , Fatores Imunológicos/farmacologia , Alcaloides de Vinca
8.
Fitoterapia ; 176: 106021, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762074

RESUMO

Acanthopanacis Cortex (A.-C) with a long history of more than1000 years, has been used to treat rheumatism effectively. Nineteen diterpenoids have been isolated from A.-C, including six new compounds (1-6). Among them, compounds 7, 9-11, 13, and 17 were discovered from A.-C for the first time. The structures of 1-6 were determined by analyzing their NMR data and comparing their experimental and calculated electronic circular dichroism spectra. Moreover, the single-crystal X-ray diffraction data of 1, 2, 8, and 14 were provided. The anti-inflammatory activity of 1-5 and 7-18 on neutrophil elastase, cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) has been studied in vitro, and the results showed that 15 had almost no inhibitory effects on COX-1 at 200 µM but a significant activity against COX-2 with an IC50 of 0.73 ± 0.006 µΜ. It indicated that compound 15 can provide valuable information for the design of selective COX-2 inhibitors.


Assuntos
Anti-Inflamatórios , Ciclo-Oxigenase 2 , Diterpenos , Elastase de Leucócito , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/química , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Ciclo-Oxigenase 1/metabolismo , Acanthaceae/química , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , China
9.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673851

RESUMO

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


Assuntos
Proteína HMGB1 , Histona Desacetilases , Elastase de Leucócito , Macrófagos , Sirtuína 1 , Humanos , Acetilação , Células Cultivadas , Fibrose Cística/metabolismo , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Proteína HMGB1/metabolismo , Ácidos Hidroxâmicos , Elastase de Leucócito/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteólise , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sirtuína 1/metabolismo
10.
Antioxidants (Basel) ; 13(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38671938

RESUMO

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are characterized by uncontrolled inflammatory responses, neutrophil activation and infiltration, damage to the alveolar capillary membrane, and diffuse alveolar injury. Neutrophil extracellular traps (NETs), formed by activated neutrophils, contribute significantly to various inflammatory disorders and can lead to tissue damage and organ dysfunction. Corilagin, a compound found in Phyllanthus urinaria, possesses antioxidative and anti-inflammatory properties. In this study, we investigated the protective effects and underlying mechanisms of corilagin in hydrochloric acid (HCl)/lipopolysaccharide (LPS)-induced lung injury. Mice received intraperitoneal administration of corilagin (2.5, 5, or 10 mg/kg) or an equal volume of saline 30 min after intratracheal HCl/LPS administration. After 20 h, lung tissues were collected for analysis. Corilagin treatment significantly mitigated lung injury, as evidenced by reduced inflammatory cell infiltration, decreased production of proinflammatory cytokines, and alleviated oxidative stress. Furthermore, corilagin treatment suppressed neutrophil elastase expression, reduced NET formation, and inhibited the expression of ERK, p38, AKT, STAT3, and NOX2. Our findings suggest that corilagin inhibits NET formation and protects against HCl/LPS-induced ALI in mice by modulating the STAT3 and NOX2 signaling pathways.

11.
Mol Ther ; 32(6): 1628-1642, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38556793

RESUMO

Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.


Assuntos
Sistemas CRISPR-Cas , Síndrome Congênita de Insuficiência da Medula Óssea , Edição de Genes , Terapia Genética , Elastase de Leucócito , Neutropenia , Regiões Promotoras Genéticas , Edição de Genes/métodos , Humanos , Neutropenia/congênito , Neutropenia/terapia , Neutropenia/genética , Terapia Genética/métodos , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Animais , Camundongos , Neutrófilos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Doenças Genéticas Ligadas ao Cromossomo X/genética
12.
J Autoimmun ; 146: 103229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653165

RESUMO

Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.


Assuntos
Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Colangite Esclerosante , Modelos Animais de Doenças , Armadilhas Extracelulares , Camundongos Knockout , Neutrófilos , Animais , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Camundongos , Humanos , Colangite Esclerosante/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Colestase/imunologia , Colestase/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Fígado/patologia , Fígado/imunologia , Fígado/metabolismo , Peroxidase/metabolismo , Peroxidase/imunologia , Desoxirribonuclease I/metabolismo , Elastase de Leucócito/metabolismo , Elastase de Leucócito/antagonistas & inibidores , Masculino , Feminino
13.
Heliyon ; 10(8): e29366, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638960

RESUMO

Background: Sivelestat, a selective inhibitor of neutrophil elastase (NE), can mitigate sepsis-related acute lung injury. However, the role of sivelestat in inhibiting oxidative stress and attenuating sepsis-related acute kidney injury (AKI) remains unclear. Here, we reported the effects of sivelestat against oxidative stress-induced AKI by suppressing the production of oxidative stress indicators. Materials and methods: A male Sprague-Dawley rat model of sepsis was established by cecal ligation and puncture (CLP). Sivelestat or normal saline was administered into jugular vein with a sustained-release drug delivery system. Indicators of inflammation and AKI, including white blood cells (WBC), neutrophils, lymphocytes, C-reactive proteins (CRP), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine (Cr) and uric acid (UA), were assessed at 24 h post-sivelestat treatment. Indicators of liver injury, including direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were also assessed at 24 h post-sivelestat treatment. Indicators of oxidative stress, including superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), were assessed at 12 h and 24 h post-sivelestat treatment. At 24 h post-sivelestat treatment, H&E staining of kidney and liver tissue was performed to observe pathological alterations. Results: At 24 h post normal saline or sivelestat (0.2 g/kg body weight) treatment, WBC, neutrophil, CRP, PCT, MDA, BUN, Cr, UA, AST, ALT, DBIL and IBIL were increased, while SOD and GSH-Px were decreased, in septic rats treated with normal saline compared with that in non-septic rats treated with normal saline (all p < 0.05). The changes of these indicators were reversed in septic rats treated with sivelestat compared with that in septic rats treated with normal saline (all p < 0.05). Similar results were found regarding the levels of oxidative stress indicators at 12 h post-sivelestat treatment. The degenerative histopathological changes in both kidney and liver tissues were ameliorated upon sivelestat treatment. Conclusions: Sivelestat plays a protective role in sepsis-related AKI by inhibiting oxidative stress. Our study reveals a possible therapeutic potential of sivelestat for oxidative stress-induced AKI.

14.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474630

RESUMO

Despite many years of research, human neutrophil elastase (HNE) still remains an area of interest for many researchers. This multifunctional representative of neutrophil serine proteases is one of the most destructive enzymes found in the human body which can degrade most of the extracellular matrix. Overexpression or dysregulation of HNE may lead to the development of several inflammatory diseases. Previously, we presented the HNE inhibitor with kinact/KI value over 2,000,000 [M-1s-1]. In order to optimize its structure, over 100 novel tripeptidyl derivatives of α-aminoalkylphosphonate diaryl esters were synthesized, and their activity toward HNE was checked. To confirm the selectivity of the resultant compounds, several of the most active were additionally checked against the two other neutrophil proteases: proteinase 3 and cathepsin G. The developed modifications allowed us to obtain a compound with significantly increased inhibitory activity against human neutrophil elastase with high selectivity toward cathepsin G, but none toward proteinase 3.


Assuntos
Elastase de Leucócito , Serina Proteases , Humanos , Elastase de Leucócito/metabolismo , Catepsina G , Mieloblastina/química , Inibidores de Serina Proteinase/farmacologia
15.
Eur J Pediatr ; 183(5): 2333-2342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430280

RESUMO

Cystic fibrosis (CF) is a multisystemic disease in which airway obstruction, infection, and inflammation play a critical role in the pathogenesis and progression of CF lung disease. The carbohydrate-binding protein Galectin-3 is increased in several inflammatory and fibrotic diseases and has recently been forwarded as a biomarker in these diseases. We aimed to define the role of serum Galectin-3 in children with CF by comparison with healthy subjects. This is a cross-sectional, case-control study. 143 CF and 30 healthy subjects were enrolled in the study. Peripheral blood and sputum concentrations of Galectins-3, interleukin (IL)-17A, IL-8, and neutrophil elastase (NE) were determined with commercial ELISA kits. There was no significant difference between the groups in age and gender (p = 0.592, p = 0.613, respectively). Serum Galectin-3 and NE concentrations were higher in the patient group than in healthy controls (p = 0.002, p < 0.001, respectively). There were no significant differences between groups according to IL-17A and IL-8 concentrations. Serum Galectin-3 was correlated with age (r = 0.289, p < 0.001) and body mass index (BMI) (r = 0.493, p < 0.001) in children with CF. Sputum Galectin-3 levels are negatively correlated with percent predictive forced expiratory volume in 1 s (FEV1) (r = - 0.297, p = 0.029), FEV1 z-score, (r = - 0.316, p = 0.020), percent predictive forced vital capacity (FVC) (r = - 0.347, p = 0.010), and FVC z-score (r = - 0.373, p = 0.006).   Conclusion: The study shows that serum Galectin-3 levels increased in clinically stable CF patients, and serum Galectin-3 response may depend on age, gender, and BMI. The sputum Galectin-3 was found to be negatively correlated with patients' lung functions. What is known: • Galectin-3 is a key regulator of chronic inflammation in the lung, liver, kidney, and tumor microenvironment. What is new: • Children with cystic fibrosis (CF) have higher serum Galectin-3 concentrations than healthy children. • Serum Galectin-3 expression influenced by age, BMI, and gender in children with CF.


Assuntos
Biomarcadores , Fibrose Cística , Galectina 3 , Humanos , Fibrose Cística/sangue , Fibrose Cística/fisiopatologia , Masculino , Feminino , Criança , Galectina 3/sangue , Estudos Transversais , Estudos de Casos e Controles , Biomarcadores/sangue , Adolescente , Escarro/metabolismo , Escarro/química , Galectinas/sangue , Interleucina-17/sangue , Pré-Escolar , Elastase de Leucócito/sangue , Proteínas Sanguíneas/análise , Interleucina-8/sangue
16.
Front Pharmacol ; 15: 1358393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495100

RESUMO

Introduction: The development of bioconjugates for the targeted delivery of anticancer agents is gaining momentum after recent success of antibody drug conjugates (ADCs) in the clinic. Smaller format conjugates may have several advantages including better tumor penetration; however, cellular uptake and trafficking may be substantially different from ADCs. To fully leverage the potential of small molecule drug conjugates (SMDCs) with potent binding molecules mediating tumor homing, novel linker chemistries susceptible for efficient extracellular activation and payload release in the tumor microenvironment (TME) need to be explored. Methods: We designed a novel class of SMDCs, which target αvß3 integrins for tumor homing and are cleaved by neutrophil elastase (NE), a serine protease active in the TME. A peptidomimetic αvß3 ligand was attached via optimized linkers composed of substrate peptide sequences of NE connected to different functional groups of various payload classes, such as camptothecins, monomethyl auristatin E, kinesin spindle protein inhibitors (KSPi) and cyclin-dependent kinase 9 inhibitors (CDK-9i). Results: NE-mediated cleavage was found compatible with the diverse linker attachments via hindered ester bonds, amide bonds and sulfoximide bonds. Efficient and traceless release of the respective payloads was demonstrated in biochemical assays. The newly designed SMDCs were highly stable in buffer as well as in rat and human plasma. Cytotoxicity of the SMDCs in cancer cell lines was clearly dependent on NE. IC50 values were in the nanomolar or sub-nanomolar range across several cancer cell lines reaching similar potencies as compared to the respective payloads only in the presence of NE. In vivo pharmacokinetics evaluating SMDC and free payload exposures in rat and particularly the robust efficacy with good tolerability in triple negative breast and small cell lung cancer murine models demonstrate the utility of this approach for selective delivery of payloads to the tumor. Discussion: These results highlight the broad scope of potential payloads and suitable conjugation chemistries paving the way for future SMDCs harnessing the safety features of targeted delivery approaches in combination with NE cleavage in the TME.

17.
Small Methods ; : e2301620, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343178

RESUMO

Acute inflammation has the potential for the recruitment of immune cells, inhibiting tumor angiogenesis, metastasis, and drug resistance thereby overcoming the tumor immunosuppressive microenvironment caused by chronic inflammation. Here, an acute inflammation inducer using bacteria outer membrane vesicles (OMVs) loaded in thermal-sensitive hydrogel (named OMVs-gel) for localized and controlled release of OMVs in tumor sites is proposed. OMVs trigger neutrophil recruitment and amplify acute inflammation inside tumor tissues. The hydrogel ensures drastic inflammation is confined within the tumor, addressing biosafety concerns that the direct administration of free OMVs may cause fatal effects. This strategy eradicated solid tumors safely and rapidly. The study further elucidates one of the possible immune mechanisms of OMVs-gel therapy, which involves the assembly of antitumor neutrophils and elastase release for selective tumor killing. Additionally, tumor vascular destruction induced by OMVs-gel results in tumor darkening, allowing for combinational photothermal therapy. The findings suggest that the use of OMVs-gel can safely induce acute inflammation and enhance antitumor immunity, representing a promising strategy to promote acute inflammation application in tumor immunotherapy.

18.
Eur J Pharm Sci ; 195: 106723, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336251

RESUMO

BACKGROUND AND OBJECTIVE: Neutrophil elastase has been identified as a potential therapeutic target for acute lung injury or acute respiratory distress syndrome, and Sivelestat is a selective, reversible and competitive neutrophil elastase inhibitor. This study was designed to investigate the safety, tolerability, pharmacokinetics and neutrophil elastase inhibitory effects of Sivelestat in healthy Chinese subjects. METHODS: A randomized, double-blind, placebo-controlled single- and multiple-dose escalation clinical trial was carried out. Briefly, healthy volunteers in twelve cohorts with 8 per cohort received 1.0-20.2 mg/kg/h Sivelestat or placebo in an intravenous infusion manner for two hours, and healthy volunteers in four cohorts received two hours intravenous infusion of 2.0-5.0 mg/kg/h Sivelestat or placebo with an interval of twelve hours for seven times. The safety and tolerability were evaluated and serial blood samples were collected for pharmacokinetics and neutrophil elastase inhibitory effects analysis at the specified time-point. RESULTS: A total of 128 subjects were enrolled and all participants completed the study except one. Sivelestat exhibited satisfactory safety and tolerability up to 20.2 mg/kg/h in single-dose cohorts and 5.0 mg/kg/h in multiple-dose cohorts. Even so, more attention should be paid to the safety risks when using high doses. The Cmax and AUC of Sivelestat increased in a dose dependent manner, and Tmax was similar for different dose cohorts. In multiple-dose cohorts, the plasma concentrations reached steady state 48 h after first administration and the accumulation of Cmax and AUC was not obvious. Furthermore, the Cmin_ss of 5.0 mg/kg/h dose cohort could meet the needs of clinical treatment. For some reason, the pharmacodynamics data revealed that the inhibitory effect of Sivelestat on neutrophil elastase content in healthy subjects was inconclusive. CONCLUSION: Sivelestat was safe and well tolerated with appropriate pharmacokinetic parameters, which provided support for more diverse dosing regimen in clinical application. CLINICAL TRIAL REGISTRATION: www.chinadrugtrials.org.cn identifier is CTR20210072.


Assuntos
Glicina/análogos & derivados , Elastase de Leucócito , Sulfonamidas , Humanos , Voluntários Saudáveis , Área Sob a Curva , Método Duplo-Cego , China , Relação Dose-Resposta a Droga
19.
Biomolecules ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397474

RESUMO

Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-19 and six non-COVID-19 postmortems. We assessed the distribution and changes in extracellular matrix (ECM) proteins, including elastin and collagen, in lung alveoli through morphometric analyses. Our findings reveal the significant degradation of elastin fibers along the thin alveolar walls of the lung parenchyma, a process that precedes the onset of interstitial collagen deposition and widespread intra-alveolar fibrosis. Lungs with collapsed alveoli and organized fibrotic regions showed extensive fragmentation of elastin fibers, accompanied by alveolar epithelial cell death. Immunoblotting of lung autopsy tissue extracts confirmed elastin degradation. Importantly, we found that the loss of elastin was strongly correlated with the induction of neutrophil elastase (NE), a potent protease that degrades ECM. This study affirms the critical role of neutrophils and neutrophil enzymes in the pathogenesis of COVID-19. Consistently, we observed increased staining for peptidyl arginine deiminase, a marker for neutrophil extracellular trap release, and myeloperoxidase, an enzyme-generating reactive oxygen radical, indicating active neutrophil involvement in lung pathology. These findings place neutrophils and elastin degradation at the center of impaired alveolar function and argue that elastolysis and alveolitis trigger abnormal ECM repair and fibrosis in fatal COVID-19 cases. Importantly, this study has implications for severe COVID-19 complications, including long COVID and other chronic inflammatory and fibrotic disorders.


Assuntos
COVID-19 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Síndrome de COVID-19 Pós-Aguda , COVID-19/metabolismo , Pulmão/metabolismo , Elastina , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Endopeptidases , Matriz Extracelular/metabolismo , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...