RESUMO
Newer effectorome prediction algorithms are considering effectors that may not comply with the canonical characteristics of small, secreted, cysteine-rich proteins. The use of effector-related motifs and domains is an emerging strategy for effector identification, but its use has been limited to individual species, whether oomycete or fungal, and certain domains and motifs have only been associated with one or the other. The use of these strategies is important for the identification of novel, non-canonical effectors (NCEs) which we have found to constitute approximately 90% of the effectoromes. We produced an algorithm in Bash called WideEffHunter that is founded on integrating three key characteristics: the presence of effector motifs, effector domains and homology to validated existing effectors. Interestingly, we found similar numbers of effectors with motifs and domains within two different taxonomic kingdoms: fungi and oomycetes, indicating that with respect to their effector content, the two organisms may be more similar than previously believed. WideEffHunter can identify the entire effectorome (non-canonical and canonical effectors) of oomycetes and fungi whether pathogenic or non-pathogenic, unifying effector prediction in these two kingdoms as well as the two different lifestyles. The elucidation of complete effectoromes is a crucial step towards advancing effectoromics and disease management in agriculture.
Assuntos
Oomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Plantas/metabolismo , Oomicetos/metabolismo , Fungos , AlgoritmosRESUMO
Lipases are enzymes that hydrolyze triglycerides to fatty acids and glycerol. A typical element in lipases is a conserved motif of five amino acids (the pentapeptide), most commonly G-X-S-X-G. Lipases with the pentapeptide A-X-S-X-G are present in species of Bacillus, Paucimonas lemoignei, and the yeast Trichosporon asahii; they are usually thermotolerant and solvent resistant. Recently, while searching for true lipases in the Trichoderma harzianum genome, one lipase containing the pentapeptide AHSMG was identified. In this study, we cloned from T. harzianum strain B13-1 the lipase ID135964, renamed here as ThaL, which is 97.65% identical with the reference. We found that ThaL is a lid-containing true lipase of cluster III that belongs to a large family comprising highly conserved proteins in filamentous fungi in the orders Hypocreales and Glomerellales, in which predominantly pathogenic fungi are found. ThaL was expressed in conidia, as well as in T. harzianum mycelium, where it was cultured in liquid minimal medium. These results-together with the amino acid composition, absence of a signal peptide, mitochondrial sorting prediction, disordered regions in the protein, and lineage-specific phylogenetic distribution of its homologs-suggest that ThaL is a non-canonical effector. In summary, AHSMG-lipase is a novel lipase family in filamentous fungi, and is probably involved in pathogenicity.