Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.092
Filtrar
1.
Int J Mol Med ; 54(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963019

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non­coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA­protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial­mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non­coding repressor of NFAT have been shown to enhance resistance to radio­ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1­type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA­binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/terapia , Animais , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética
2.
Ageing Res Rev ; 99: 102404, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971322

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.

3.
Mol Ther Nucleic Acids ; 35(3): 102228, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38975000

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3' UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX vs. mdx52 muscles while skipped dystrophin transcript levels are unchanged supporting a post-transcriptional mechanism of action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.

4.
Mol Ther Nucleic Acids ; 35(3): 102234, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38974999

RESUMO

Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.

5.
Biomedicines ; 12(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38927541

RESUMO

The development of childhood obesity is a complex process influenced by a combination of genetic predisposition and environmental factors, such as sleep, diet, physical activity, and socioeconomic status. Long-term solutions for decreasing the risk of childhood obesity remain elusive, despite significant advancements in promoting health and well-being in school and at home. Challenges persist in areas such as adherence to interventions, addressing underlying social determinants, and individual differences in response to treatment. Over the last decade, there has been significant progress in epigenetics, along with increased curiosity in gaining insights into how sleep and lifestyle decisions impact an individual's health. Epigenetic modifications affect the expression of genes without causing changes to the fundamental DNA sequence. In recent years, numerous research studies have explored the correlation between sleep and the epigenome, giving a better understanding of DNA methylation, histone modification, and non-coding RNAs. Although significant findings have been made about the influence of sleep on epigenetics, a notable gap exists in the literature concerning sleep-related genes specifically associated with childhood obesity. Consequently, it is crucial to delve deeper into this area to enhance our understanding. Therefore, this review primarily focuses on the connection between sleep patterns and epigenetic modifications in genes related to childhood obesity. Exploring the interplay between sleep, epigenetics, and childhood obesity can potentially contribute to improved overall health outcomes. This comprehensive review encompasses studies focusing on sleep-related genes linked to obesity.

6.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928006

RESUMO

Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.


Assuntos
Acidente Vascular Cerebral Hemorrágico , AVC Isquêmico , MicroRNAs , Humanos , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Acidente Vascular Cerebral Hemorrágico/terapia , Acidente Vascular Cerebral Hemorrágico/genética , Acidente Vascular Cerebral Hemorrágico/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estresse Oxidativo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia
7.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928210

RESUMO

Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.


Assuntos
Encéfalo , Formaldeído , Análise de Sequência de RNA , Fixação de Tecidos , Formaldeído/química , Animais , Camundongos , Encéfalo/metabolismo , Fixação de Tecidos/métodos , Análise de Sequência de RNA/métodos , Doença de Alzheimer/genética , Polímeros/química , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética
8.
Sci Rep ; 14(1): 14436, 2024 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910181

RESUMO

Disulfidptosis is a recently identified mode of regulated cell death. Regulating disulfidptosis in carcinoma is a promising therapeutic approach. Long non-coding RNAs (lncRNAs) have been reported to be related to the occurrence and development of many cancers. Disulfidptosis-related lncRNAs (DRLs) in HPV-negative oral squamous cell carcinoma (OSCC) have not been studied. Based on The Cancer Genome Atlas (TCGA) database, least absolute shrinkage selection operator (LASSO) analysis and Cox regression analysis were used to identify overall survival related DRLs and construct the signature. Kaplan-Meier, time-dependent receiver operating characteristics (ROC) and principal component analyses (PCA) were explored to demonstrate the prediction potential of the signature. Subgroup analysis stratified by different clinicopathological characteristics were conducted. Nomogram was established by DRLs signature and independent clinicopathological characteristics. The calibration plots were performed to reveal the accuracy of nomogram. Immune cell subset infiltration, immunotherapy response, drug sensitivity analysis, and tumor mutation burden (TMB) were conducted. Underlying functions and pathways were explored by Gene Set Enrichment Analysis (GSEA) analysis. Previous lncRNA signatures of OSCC were retrieved from PubMed for further validation. Gene expression omnibus (GEO) datasets (GSE41613 and GSE85446) were merged as an external validation for DRLs signature. Consensus clustering analysis of DRLs signature and experimental validation of DRLs were also explored. This research sheds light on the robust performance of DRLs signature in survival prediction, immune cell infiltration, immune escape, and immunotherapy of HPV-negative OSCC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Feminino , Masculino , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Nomogramas , Prognóstico , Estimativa de Kaplan-Meier
9.
Front Oncol ; 14: 1411672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912059

RESUMO

With the development of gene testing technology, we have found many different genes, and lncRNA is one of them. LncRNAs refer to a non-protein coding RNA molecule with a length of more than 200bp, which is one of the focuses of research on human malignant diseases such as LUAD. LncRNAs act as an oncogene or inhibitor to regulate the occurrence and progression of tumors. The differential expression of LncRNAs promotes or inhibits the progression of lung adenocarcinoma by affecting cell proliferation, metastasis, invasion, and apoptosis, thus affecting the prognosis and survival rate of patients. Therefore, LncRNAs can be used as a potential target for diagnosis and treatment of cancer. The early diagnosis of the disease was made through the detection of tumor markers. Because lung adenocarcinoma is not easy to diagnose in the early stage and tumor markers are easy to ignore, LncRNAs play an important role in the diagnosis and treatment of lung adenocarcinoma. The main purpose of this article is to summarize the known effects of LncRNAs on lung adenocarcinoma, the effect of differential expression of LncRNAs on the progression of lung adenocarcinoma, and related signal transduction pathways. And to provide a new idea for the future research of lung adenocarcinoma-related LncRNAs.

10.
Aging (Albany NY) ; 16(11): 9972-9989, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38862217

RESUMO

PURPOSE: Lung adenocarcinoma (LUAD) is a prevalent malignant tumor worldwide, with high incidence and mortality rates. However, there is still a lack of specific and sensitive biomarkers for its early diagnosis and targeted treatment. Disulfidptosis is a newly identified mode of cell death that is characteristic of disulfide stress. Therefore, exploring the correlation between disulfidptosis-related long non-coding RNAs (DRGs-lncRNAs) and patient prognosis can provide new molecular targets for LUAD patients. METHODS: The study analysed the transcriptome data and clinical data of LUAD patients in The Cancer Genome Atlas (TCGA) database, gene co-expression, and univariate Cox regression methods were used to screen for DRGs-lncRNAs related to prognosis. The risk score model of lncRNA was established by univariate and multivariate Cox regression models. TIMER, CIBERSORT, CIBERSORT-ABS, and other methods were used to analyze immune infiltration and further evaluate immune function analysis, immune checkpoints, and drug sensitivity. Real-time polymerase chain reaction (RT-PCR) was performed to detect the expression of DRGs-lncRNAs in LUAD cell lines. RESULTS: A total of 108 lncRNAs significantly associated with disulfidptosis were identified. A prognostic model was constructed by screening 10 lncRNAs with independent prognostic significance through single-factor Cox regression analysis, LASSO regression analysis, and multiple-factor Cox regression analysis. Survival analysis of patients through the prognostic model showed that there were obvious survival differences between the high- and low-risk groups. The risk score of the prognostic model can be used as an independent prognostic factor independent of other clinical traits, and the risk score increases with stage. Further analysis showed that the prognostic model was also different from tumor immune cell infiltration, immune function, and immune checkpoint genes in the high- and low-risk groups. Chemotherapy drug susceptibility analysis showed that high-risk patients were more sensitive to Paclitaxel, 5-Fluorouracil, Gefitinib, Docetaxel, Cytarabine, and Cisplatin. Additionally, RT-PCR analysis demonstrated differential expression of DRGs-lncRNAs between LUAD cell lines and the human bronchial epithelial cell line. CONCLUSIONS: The prognostic model of DRGs-lncRNAs constructed in this study has certain accuracy and reliability in predicting the survival prognosis of LUAD patients, and provides clues for the interaction between disulfidptosis and LUAD immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores Tumorais/genética , Imunoterapia/métodos , Masculino , Feminino , Linhagem Celular Tumoral , Transcriptoma , Pessoa de Meia-Idade
11.
Biochimie ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936684

RESUMO

In hominids, including Homo sapiens, uric acid is the end product of purine catabolism. In contrast, other placental mammals further degrade uric acid to (S)-allantoin by enzymes such as urate oxidase (uricase), HIU hydrolase (HIUase), and OHCU decarboxylase. Some organisms, such as frogs and fish, hydrolyze (S)-allantoin to allantoate and eventually to (S)-ureidoglycolate and urea, while marine invertebrates convert urea to ammonium. In H. sapiens, mutations in the uricase gene led to a reduction in the selective pressure for maintaining the integrity of the genes encoding the other enzymes of the purine catabolism pathway, resulting in an accumulation of uric acid. The hyperuricemia resulting from this accumulation is associated with gout, cardiovascular disease, diabetes, and preeclampsia. Many commonly used drugs, such as aspirin, can also increase uric acid levels. Despite the apparent absence of these enzymes in H. sapiens, there appears to be production of transcripts for uricase (UOX), HIUase (URAHP), OHCU decarboxylase (URAD), and allantoicase (ALLC). While some URAHP transcripts are classified as long non-coding RNAs (lncRNAs), URAD and ALLC produce protein-coding transcripts. Given the presence of these transcripts in various tissues, we hypothesized that they may play a role in the regulation of purine catabolism and the pathogenesis of diseases associated with hyperuricemia. Here, we specifically investigate the unique aspects of purine catabolism in H. sapiens, the effects mutations of the uricase gene, and the potential regulatory role of the corresponding transcripts. These findings open new avenues for research and therapeutic approaches for the treatment of hyperuricemia and related diseases.

12.
Neurosci Biobehav Rev ; 164: 105785, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945418

RESUMO

Exposure to different environmental factors, social and socioeconomic factors promotes development of the early-life adversity (ELA) phenotype. The persistence of this phenotype across generations is an interesting phenomenon that remains unexplored. Of late many studies have focused on disease-associated outcomes of ELA following exposure during childhood but the persistence of epigenetic imprints transmitted by ELA exposed parents to their offspring remains poorly described. It is possible that both parents are able to transmit ELA-associated genetic imprints to their offspring via transgenerational inheritance mechanisms. Here, we highlight the role of the mother and father in the biological process of conception, from epigenetic reprogramming cycles to later environmental exposures. We explain some of the known determinants of ELA (pollution, socioeconomic challenges, infections, etc.) and their disease-associated outcomes. Finally, we highlight the role of epigenetics, mitochondria and ncRNAs as mechanisms mediating transgenerational inheritance. Whether these transgenerational inheritance mechanisms occur in the human context remains unclear but there is a large body of suggestive evidence in non-human models that points out to its existence.

13.
Wiley Interdiscip Rev RNA ; 15(3): e1854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831585

RESUMO

Leukodystrophies are a class of rare heterogeneous disorders which affect the white matter of the brain, ultimately leading to a disruption in brain development and a damaging effect on cognitive, motor and social-communicative development. These disorders present a great clinical heterogeneity, along with a phenotypic overlap and this could be partially due to contributions from environmental stimuli. It is in this context that there is a great need to investigate what other factors may contribute to both disease insurgence and phenotypical heterogeneity, and novel evidence are raising the attention toward the study of epigenetics and transcription mechanisms that can influence the disease phenotype beyond genetics. Modulation in the epigenetics machinery including histone modifications, DNA methylation and non-coding RNAs dysregulation, could be crucial players in the development of these disorders, and moreover an aberrant RNA maturation process has been linked to leukodystrophies. Here, we provide an overview of these mechanisms hoping to supply a closer step toward the analysis of leukodystrophies not only as genetically determined but also with an added level of complexity where epigenetic dysregulation is of key relevance. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNA RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.


Assuntos
Epigênese Genética , Humanos , RNA/metabolismo , RNA/genética , Animais
14.
Int J Biol Macromol ; 273(Pt 2): 132732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823748

RESUMO

One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.


Assuntos
Autofagia , Neoplasias Colorretais , Epigênese Genética , Exossomos , Regulação Neoplásica da Expressão Gênica , RNA não Traduzido , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Autofagia/genética , Exossomos/metabolismo , Exossomos/genética , RNA não Traduzido/genética , Transdução de Sinais , Animais
15.
Front Genet ; 15: 1396195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836038

RESUMO

Tendons serve as important weight-bearing structures that smoothly transfer forces from muscles to skeletal parts, allowing contracted muscle movements to be translated into corresponding joint movements. For body mechanics, tendon tissue plays an important role. If the tendons are damaged to varying degrees, it can lead to disability or pain in patients. That is to say, tendon injuries havea significant impact on quality of life and deserve our high attention. Compared to other musculoskeletal tissues, tendons are hypovascular and hypo-cellular, and therefore have a greater ability to heal, this will lead to a longer recovery period after injury or even disability, which will significantly affect the quality of life. There are many causes of tendon injury, including trauma, genetic factors, inflammation, aging, and long-term overuse, and the study of related mechanisms is of great significance. Currently, tendon there are different treatment modalities, like injection therapy and surgical interventions. However, they have a high failure rate due to different reasons, among which the formation of adhesions severely weakens the tissue strength, affecting the functional recovery and the patient's quality of life. A large amount of data has shown that non coding RNAs can play a huge role in this field, thus attracting widespread attention from researchers from various countries. This review summarizes the relevant research progress on non-coding RNAs in tendon injuries, providing new ideas for a deeper understanding of tendon injuries and exploring new diagnostic and therapeutic approaches.

16.
Pathol Res Pract ; 260: 155386, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38861919

RESUMO

Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.

17.
Front Neurosci ; 18: 1392688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841098

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.

18.
Pathol Res Pract ; 260: 155412, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38889493

RESUMO

According to findings, long non-coding RNAs (lncRNAs) serves an integral part in growth and development of a variety of human malignancies, including Hepatoblastoma (HB). HB is a rare kind of carcinoma of the liver that mostly affects kids and babies under the age of three. Its manifestations include digestive swelling, abdominal discomfort, and losing weight. This thorough investigation digs into the many roles that lncRNAs serve in HB, giving views into their varied activities as well as possible therapeutic consequences. The function of lncRNAs in HB cell proliferation, apoptosis, migratory and penetrating capacities, epithelial-mesenchymal transition, and therapy tolerance is discussed. Various lncRNA regulatory roles are investigated in depth, yielding information on their effect on essential cell processes such as angiogenesis, apoptosis, immunity, and growth. Circulating lncRNAs are currently acknowledged as potential indications for the initial stages of identification of cancer, with the ability to diagnose as well as forecast. In addition to their diagnostic utility, lncRNAs provide curative opportunities as locations and actors, contributing to the expanding landscape of cancer research. Several HB-linked lncRNAs have been demonstrated to exhibit abnormal expression and are involved in tumor-like characteristics via DNA, RNA, or protein binding or encoding short peptides. As a result, a better knowledge of lncRNA instability might bring fresh perspectives into HB etiology as well as innovative strategies for HB early diagnosis and therapy. We describe the abnormalities of lncRNA expression in HB and their tumor-suppressive or carcinogenic activities during HB carcinogenesis in this study. Furthermore, we explore lncRNAs' diagnostic and therapeutic possibilities in HB.

19.
Transl Cancer Res ; 13(5): 2357-2371, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38881918

RESUMO

Background: Stomach adenocarcinoma (STAD), a frequently occurring gastrointestinal tumour, is often detected late and has a poor prognosis. Long non-coding RNAs (lncRNAs) significantly affect tumour development. Recent studies have identified disulfidptosis as a previously unexplained form of cell death. Herein, we aimed to examine the predictive value of disulfidptosis-related lncRNA models for the clinical prognosis and immunotherapy of STAD. Methods: STAD-related transcriptomic data were obtained from The Cancer Genome Atlas (TCGA), whereas genes associated with disulfidptosis were identified from previously published papers. A risk prediction model for disulfidptosis-related lncRNAs was developed using the Cox regression and least absolute shrinkage selection algorithm methods. The accuracy of the model was confirmed using calibration curves, and the biological functions were analysed using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA). Finally, the tumour mutation burden (TMB) and tumour immune dysfunction and exclusion (TIDE) algorithms were used to screen drugs that are sensitive to STAD. Results: The risk prediction models were constructed using seven disulfidptosis-related lncRNAs. The validated results were consistent with the predicted ones, with significant survival differences. When combined with clinical data, the risk scores were used as independent prognostic markers. Based on the tumour mutation load, the high-risk patient group had a poorer survival rate as compared with the low-risk patient group. Further studies were conducted to understand the different groups' inconsistent responses to immune status; subsequently, relatively sensitive drugs were identified. Conclusions: Overall, seven markers of disulfidptosis-related lncRNAs associated with STAD were found to facilitate prognostic prediction, suggesting new ideas for immunotherapy and clinical applications.

20.
Cells Dev ; : 203932, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852677

RESUMO

Tooth morphogenesis is a critically ordered process manipulated by a range of signaling factors. Particularly, the involvement of fine-tuned signaling mediated by non-coding RNAs has been of longstanding interest. Here, we revealed a double-negative feedback loop acted by a long non-coding RNA (LOC102159588) and a microRNA (miR-133b) that modulated tooth morphogenesis of miniature swine. Mechanistically, miR-133b repressed the transcription of LOC102159588 through downstream target Sp1. Conversely, LOC102159588 not only inhibited the transport of pre-miR-133b from the nucleus to the cytoplasm by regulating exportin-5 but also served as a sponge in the cytoplasm, suppressing functional miR-133b. Together, the double-negative feedback loop maintained normal tooth morphogenesis by modulating endogenous apoptosis. Related disruptions would lead to an arrest of tooth development and may result in tooth malformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...