Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472637

RESUMO

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Assuntos
Nefropatias , Humanos , Nefropatias/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Fibrose
2.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456480

RESUMO

The antitumor effect of norcantharidin (NCTD) has been widely reported. However, whether NCTD can inhibit cervical cancer remains unknown. In the present study, it was shown that NCTD inhibited the viability of cervical cancer cells and caused cell cycle arrest in a concentration­dependent manner. Further analysis revealed that the NCTD­induced reduction in cell viability could be reversed by the inhibitor of apoptosis z­VAD­FMK and by the inhibitor of endoplasmic reticulum (ER) stress, 4­phenylbutyric acid (4­PBA). Additionally, NCTD led to the accumulation of reactive oxygen species as well as a decrease in the mitochondrial membrane potential in cervical cancer cells, whereas 4­PBA pre­treatment attenuated these alterations. In addition, NCTD increased the expression of the apoptosis­related proteins Bip, activating transcription factor (ATF) 4 and C/EBP homologous protein in a concentration­dependent manner. Moreover, NCTD significantly increased the expression of the ER stress­related signaling molecules protein kinase R­like ER kinase, inositol­requiring enzyme 1 and ATF6, but 4­PBA abolished these effects. In vivo experiments showed that NCTD significantly inhibited the growth of subcutaneous tumors in mice. Additionally, the expression of ER stress­related molecules and apoptosis­related proteins increased significantly after NCTD treatment. In conclusion, NCTD induces apoptosis by activating ER stress and ultimately curtails the progression of cervical cancer.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Butilaminas , Neoplasias do Colo do Útero , Humanos , Feminino , Camundongos , Animais , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose , Estresse do Retículo Endoplasmático , Proliferação de Células , Linhagem Celular Tumoral
3.
Int Immunopharmacol ; 129: 111655, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340423

RESUMO

Wear particles generated from the surface of implanted prostheses can lead to peri-implant osteolysis and subsequent aseptic loosening. In the inflammatory environment, extensive formation and activation of osteoclasts are considered the underlying cause of peri-implant osteolysis. Current medications targeting osteoclasts for the treatment of particle-induced bone resorption are not ideal due to significant side effects. Therefore, there is an urgent need to develop more effective drugs with fewer side effects. Norcantharidin (NCTD), a derivative of cantharidin extracted from blister beetles, is currently primarily used for the treatment of solid tumors in clinical settings. However, the potential role of NCTD in treating aseptic loosening of the prosthesis has not been reported. In this study, the in vitro results demonstrated that NCTD could effectively inhibit the formation of osteoclasts and bone resorption induced by the RANKL. Consistently, NCTD strongly inhibited RANKL-induced mRNA and protein levels of c-Fos and NFATc1, concomitant with reduced expression of osteoclast specific genes including TRAP, CTR and CTSK. The in vivo data showed that NCTD exerted significant protective actions against titanium particle-induced inflammation and subsequent osteolysis. The molecular mechanism investigation revealed that NCTD could suppress the activations of RANKL-induced MAPK (p38, ERK). Overall, these findings support the potential use of NCTD for the treatment of aseptic loosening following total joint arthroplasty.


Assuntos
Reabsorção Óssea , Compostos Bicíclicos Heterocíclicos com Pontes , Osteólise , Animais , Camundongos , Osteoclastos , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Titânio/efeitos adversos , NF-kappa B/metabolismo , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Ligante RANK/metabolismo , Osteogênese , Camundongos Endogâmicos C57BL
4.
Nat Prod Res ; 38(4): 673-678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36855296

RESUMO

Norcantharidin (NCTD) is a demethylated analogue of cantharidin. It was recently demonstrated that NCTD reduces iron contents in the liver and spleen of mice in vivo, indicating that NCTD can affect iron metabolism via hepcidin. Here, we investigated the effects of NCTD on expression of iron storage protein ferritin-light chain (Ft-L), transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1), hepcidin, iron regulatory protein 1 (IRP1), IL-6, p-JAK2 and p-STAT3 in lipopolysaccharides (LPS)-treated RAW264.7 cells in vitro via Real-time PCR and Western blotting analysis. We demonstrate that NCTD down-regulates Ft-L, hepcidin, IL-6, pJAK2, pSTAT3 and up-regulates TfR1, DMT1, Fpn1 and IRP1 expression in LPS treated cells, showing that NCTD can inhibit hepcidin via the IL-6/JAK2/STAT3 signalling pathway and also increase TfR1, DMT1 and Fpn1 expression via down-regulating hepcidin and up-regulating IRP1. Our findings provide further evidence in vitro for the role of NCTD in iron metabolism.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Hepcidinas , Interleucina-6 , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Regulação para Baixo , Lipopolissacarídeos/farmacologia , Ferro/metabolismo , Macrófagos/metabolismo
5.
Am J Cancer Res ; 13(11): 5024-5038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058814

RESUMO

Norcantharidin (NCTD) is a water-soluble synthetic small molecule drug that has been approved by the Chinese FDA for the treatment of cancer in China. Among these NCTD-treated cancers, hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and one of the most extensively studied. Research over the past few decades has made great strides in understanding how NCTD induces mitotic arrest, anti-proliferation, anti-metastasis, apoptosis and cytotoxic autophagy or autophagic cell death in HCC. In this article, we review recent progress in the application of NCTD for the treatment of HCC, with emphasis on the pharmacological mechanism of NCTD against hepatocellular carcinoma. The accumulated results show that NCTD has the ability to induce mitotic arrest, anti-proliferation, anti-metastasis, apoptosis and cytotoxic autophagy or autophagic cell death in HCC by down-regulating the expression of ISG15, MMP-9, u-PA, Mcl-1 and the accumulation of regulatory T cells, up-regulating the expression of FAM46C, miR-214 and the expression and phosphorylation of p21Cip1/Waf1 and CDC25C, and by inhibiting the c-Met-mTOR and JAK/STAT3 signaling pathways, reversing the methylation of RASSF1A gene, and activating TRAIL-R2/DR5 signal transduction.

6.
J Transl Med ; 21(1): 858, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012658

RESUMO

BACKGROUND: Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application. In this study, we synthesized a series of derivatives of NCTD to address this. Among these compounds, DCZ5417 demonstrated the greatest anti-MM effect and fewest side effects. Its anti-myeloma effects and  the mechanism were further tested. METHODS: Molecular docking, pull-down, surface plasmon resonance-binding, cellular thermal shift, and ATPase assays were used to study the targets of DCZ5417. Bioinformatic, genetic, and pharmacological approaches were used to elucidate the mechanisms associated with DCZ5417 activity. RESULTS: We confirmed a highly potent interaction between DCZ5417 and TRIP13. DCZ5417 inhibited the ATPase activity of TRIP13, and its anti-MM activity was found to depend on TRIP13. A mechanistic study verified that DCZ5417 suppressed cell proliferation by targeting TRIP13, disturbing the TRIP13/YWHAE complex and inhibiting the ERK/MAPK signaling axis. DCZ5417 also showed a combined lethal effect with traditional anti-MM drugs. Furthermore, the tumor growth-inhibitory effect of DCZ5417 was demonstrated using in vivo tumor xenograft models. CONCLUSIONS: DCZ5417 suppresses MM progression in vitro, in vivo, and in primary cells from drug-resistant patients, affecting cell proliferation by targeting TRIP13, destroying the TRIP13/YWHAE complex, and inhibiting ERK/MAPK signaling. These results imply a new and effective therapeutic strategy for MM treatment.


Assuntos
Mieloma Múltiplo , Humanos , Proteínas 14-3-3/metabolismo , Apoptose , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Mieloma Múltiplo/metabolismo , Transdução de Sinais , Animais
7.
Nat Prod Res ; : 1-8, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950667

RESUMO

Using molecular hybridisation to develop conjugates of natural antitumor drugs is one of the research hotspots in recent drug development. In this study, ß-anhydroicaritine with anticancer activity was conjugated to norcantharidine selectively to develop new antitumor lead candidates. In the condition of EDCI/DMAP/DCM, the C-3 and C-5 hydroxyl groups of ß-anhydroicaritine was coupled with norcantharidin monoacid ester respectively, and the inhibitory activity of the synthesised conjugates against HepG2, MCF-7 and L-02 cells were tested by CCK-8 method. Most of these conjugates showed a better activity against HepG2 and MCF-7 cell lines compared to parent compound icaritin, but weaker than another parent compound norcantharidin.

8.
Molecules ; 28(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005331

RESUMO

OBJECTIVE: The objective of this study was to examine the preparation process of DSPE-PEG-C60/NCTD micelles and assess the impact of fullerenol (C60)-modified micelles on the nephrotoxicity and antitumor activity of NCTD. METHOD: The micelles containing NCTD were prepared using the ultrasonic method and subsequently optimized and characterized. The cytotoxicity of micelles loaded with NCTD was assessed using the CCK-8 method on human hepatoma cell lines HepG2 and BEL-7402, as well as normal cell lines HK-2 and L02. Acridine orange/ethidium bromide (AO/EB) double staining and flow cytometry were employed to assess the impact of NCTD-loaded micelles on the apoptosis of the HK-2 cells and the HepG2 cells. Additionally, JC-1 fluorescence was utilized to quantify the alterations in mitochondrial membrane potential. The generation of reactive oxygen species (ROS) following micelle treatment was determined through 2',7'-dichlorofluorescein diacetate (DCFDA) staining. RESULTS: The particle size distribution of the DSPE-PEG-C60/NCTD micelles was determined to be 91.57 nm (PDI = 0.231). The zeta potential of the micelles was found to be -13.8 mV. The encapsulation efficiency was measured to be 91.9%. The in vitro release behavior of the micelles followed the Higuchi equation. Cellular experiments demonstrated a notable decrease in the toxicity of the C60-modified micelles against the HK-2 cells, accompanied by an augmented inhibitory effect on cancer cells. Compared to the free NCTD group, the DSPE-PEG-C60 micelles exhibited a decreased apoptosis rate (12%) for the HK-2 cell line, lower than the apoptosis rate observed in the NCTD group (36%) at an NCTD concentration of 75 µM. The rate of apoptosis in the HepG2 cells exhibited a significant increase (49%), surpassing the apoptosis rate observed in the NCTD group (24%) at a concentration of 150 µM NCTD. The HK-2 cells exhibited a reduction in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM) upon exposure to C60-modified micelles compared to the NCTD group. CONCLUSIONS: The DSPE-PEG-C60/NCTD micelles, as prepared in this study, demonstrated the ability to decrease cytotoxicity and ROS levels in normal renal cells (HK-2) in vitro. Additionally, these micelles showed an enhanced antitumor activity against human hepatocellular carcinoma cells (HepG2, BEL-7402).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Micelas , Espécies Reativas de Oxigênio/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Apoptose
9.
Colloids Surf B Biointerfaces ; 232: 113599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857183

RESUMO

Interventional therapies are increasingly used in clinical trials for hepatocellular carcinoma (HCC). Sorafenib is the front-line remedy for HCC, however, chemoresistance occurs immutably and affects the effectiveness of treatment. In a previous study, a norcantharidin liposome emulsion hybrid (NLEH) delivery system for HCC was developed. This study aims to examine the therapeutic effects of the combination of intratumoral injection of NLEH and sorafenib in treating HCC. Sorafenib combined with NLEH activated the apoptosis pathway by synergistically upregulating caspase-9, promoting cytotoxicity, apoptosis (64.57%), and G2/M cell cycle arrest (48.96%). Norcantharidin could alleviate sorafenib resistance by counteracting sorafenib-induced phosphorylation of Akt. Additionally, intratumoral injection of NLEH exhibited a sustained accumulation in the tumor within 24 h and didn't distribute to other major organs. Intratumoral injection of NLEH in combination with oral sorafenib displayed the most potent tumor growth inhibitory effect (77.91%) in vivo. H&E staining results and the indicators of the renal and liver function tests demonstrated the safety of this combination therapy. Overall, these results showed that intratumoral injection of NLEH in combination with oral sorafenib treatment represented a rational potential therapeutic option for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Lipossomos/farmacologia , Neoplasias Hepáticas/patologia , Emulsões/farmacologia , Injeções Intralesionais , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
10.
Mol Med Rep ; 28(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37654211

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the GAPDH control western blotting data shown in Fig. 2C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes. Moreover, certain of the western blotting data shown internally within Fig. 4E and F appeared to be strikingly similar, even though the experiments portrayed in these Figure parts were intended to show the results obtained from different cell lines. Owing to the fact that the contentious data in the above article were already under consideration for publication, or had already been published, prior to its submission to Molecular Medicine Reports, and based on an overall lack in the confidence in the data, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 22: 774­782, 2020; DOI: 10.3892/mmr.2020.11151].

11.
AAPS PharmSciTech ; 24(5): 118, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165275

RESUMO

To address the limitations of norcantharidin (NCTD) in clinical applications, including restricted tumor accumulation and intense irritation, we have developed a new derivative of NCTD with (S)-1-benzyl-3-pyrrolidinol, which can be actively loaded into liposomes to achieve drug encapsulation and sustained release properties by using pH gradient loading technique. Cytotoxicity tests against cancer cell lines (Hepa 1-6 and 4 T1 cells) have demonstrated that this derivative exhibits comparable activity to NCTD in vitro. The NCTD derivative can be efficiently loaded into liposomes with high encapsulation efficiency (98.7%) and high drug loading (32.86%). Tolerability and antitumor efficacy studies showed that the liposomal NCTD derivative was well tolerated at intravenous injection doses of 3 folds higher than the parent drug solution, while significantly improved anticancer activity in vivo was achieved. This liposomal nanodrug could become a potent and safe NCTD formulation alternative for cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Lipossomos/química , Portadores de Fármacos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanopartículas/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral
12.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111258

RESUMO

Melanoma is a highly lethal type of cancer that has had an increase in incidence in the last decades. Nevertheless, current therapies lack effectiveness and have highly disabling side effects, which calls for new therapeutic strategies. Norcantharidin (NCTD) is an acid derivative with potential antitumor activity isolated from natural blister beetles. However, its solubility limitations restrict its use. To address this issue, we developed an oil-in-water nanoemulsion using commonly available cosmetic ingredients, which increased NCTD solubility 10-fold compared to water. The developed nanoemulsion showed a good droplet size and homogeneity, with adequate pH and viscosity for skin application. In vitro drug release studies showed a sustained release profile, ideal for prolonged therapeutic effects. Accelerated stability studies proved that the formulation was reasonably stable under stress conditions, with particle separation fingerprints, instability index, particle size, and sedimentation velocity analyses being conducted. To assess the therapeutic potential of the developed formulation, in vitro studies were conducted on melanoma B16F1 cells; results showed an IC50 of 1.026 +/- 0.370 mg/kg, and the cells' metabolic activity decreased after exposure to the NCTD nanoemulsion. Hence, a new "easy-to-make" nanoformulation with therapeutic potential on melanoma cells was developed, as a possible adjuvant for future melanoma treatment.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36882938

RESUMO

Combination chemotherapy has been proved to be an effective strategy in the clinic, and nanoformulations have drawn much attention in the field of drug delivery. However, conventional nanocarriers suffer from shortcomings such as inefficient coloading and undesired molar ratios of the combined drugs, preleakage of cargos during systemic circulation, and lack of cancer-selective drug release. To achieve tumor-specific codelivery of cisplatin (CDDP) and norcantharidin (NCTD) for synergistic treatment of liver cancer, a novel linear-dendritic polymer, termed as G1(PPDC)x, was designed and synthesized, where a prodrug consisting of cisplatin (CDDP) and norcantharidin (NCTD) was conjugated to PEG2000 via ester bonds to fabricate linear polymer-drug conjugates, and the conjugates were subsequently grafted to the terminal hydroxyls of a dendritic polycarbonate core. Benefiting from the hydrogen bond interactions, G1(PPDC)x could spontaneously self-assemble into a unique type of raspberry-like multimicelle clusters in solution (G1(PPDC)x-PMs). G1(PPDC)x-PMs possessed an optimal synergistic ratio of CDDP and NCTD, without obvious premature release or disassembly in biological environments. Intriguingly, upon extravasation into the interstitial tumor tissues, G1(PPDC)x-PMs (132 nm in diameter) could disassemble and reassemble into smaller micelles (40 nm in diameter) in response to the mildly acidic tumor microenvironment, which would enhance the deep tumor penetration and cellular accumulation of drugs. In vivo delivery of G1(PPDC)x-PMs led to a significantly prolonged blood circulation half-life, which is beneficial to achieve sufficient tumor accumulation through the enhanced permeability and retention (EPR) effect. G1(PPDC)x-PMs displayed the best antitumor activity in H22 tumor-bearing mice with a tumor inhibition rate of 78.87%. Meanwhile, G1(PPDC)x-PMs alleviated both myelosuppression toxicities of CDDP and vascular irritation of NCTD. Our results demonstrated that G1(PPDC)x-PMs could serve as an effective drug delivery system for codelivery of CDDP and NCTD to treat liver cancer efficiently.

14.
Anal Chim Acta ; 1239: 340642, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628744

RESUMO

Norcantharidin (NCTD), a demethylated derivative of cantharidin, is an anticancer active component in traditional Chinese medicine. At present, the main methods for finding its target proteins are pharmacological methods and biophysical screening, which cannot achieve the purpose of efficient and accurate screening. Here we established a new analytical method for specific fishing and assisted imaging for norcantharidin target proteins. For the AIE supramolecule probe, the benzophenone azide (BPA) fluorescent nanoparticles with strong AIE properties were encapsulated in biocompatible DSPE-PEG that covalently coupled with NCTD (named BPA@NCTD NPs). The target proteins of NCTD can be captured by BPA@NCTD NPs, and then be detected to investigate the potential signaling pathways. The screened differential proteins were analysed through the protein and signaling pathway database, and multiple signaling pathways were obtained and verified. The mechanism of norcantharidin in inhibiting the migration and invasion of A549 cells through the P53 signaling pathway was confirmed by Western blot experiments. Our research showed that AIE supramolecule probe BPA@NCTD NPs has the dual functions of specific screening of A549 cells target proteins and biological imaging, which not only offers a good anti-fluorescence quenching ability for the dynamic imaging process of NCTD, but also provides a novel and efficient specific method for efficient analysis of target proteins and signal pathways.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Transdução de Sinais , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
15.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674695

RESUMO

Colorectal cancer (CRC) is the third most prevalent and second deadliest cancer worldwide. In addition, metastasis directly causes up to 90% of all CRC deaths, highlighting the metastatic burden of the disease. Biomarkers such as S100A4 and MACC1 aid in identifying patients with a high risk of metastasis formation. High expression of S100A4 or MACC1 and to a greater extent the combination of both biomarkers is a predictor for metastasis and poor patient survival in CRC. MACC1 is a tumor-initiating and metastasis-promoting oncogene, whereas S100A4 has not been shown to initiate tumor formation but can, nevertheless, promote malignant tumor growth and metastasis formation. Cantharidin is a natural drug extracted from various blister beetle species, and its demethylated analogue norcantharidin has been shown in several studies to have an anti-cancer and anti-metastatic effect in different cancer entities such as CRC, breast cancer, and lung cancer. The impact of the natural compound cantharidin and norcantharidin on S100A4 and MACC1 gene expression, cancer cell migration, motility, and colony formation in vitro was tested. Here, for the first time, we have demonstrated that cantharidin and norcantharidin are transcriptional inhibitors of S100A4 and MACC1 mRNA expression, protein expression, and motility in CRC cells. Our results clearly indicate that cantharidin and, to a lesser extent, its analogue norcantharidin are promising compounds for efficient anti-metastatic therapy targeting the metastasis-inducing genes S100A4 and MACC1 for personalized medicine for cancer patients.


Assuntos
Neoplasias Colorretais , Neoplasias , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cantaridina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Colorretais/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Transativadores/genética , Transativadores/metabolismo
16.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 99-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184699

RESUMO

Norcantharidin (NCTD) is the demethylated analog of cantharidin, with allegedly reduced toxicity. However, there is still limited information regarding its posology and potential risk in its use in cancer treatment. Healthy BDF1 mice were intraperitoneally administered with norcantharidin (0, 3, 6, 12, and 25 mg/kg) every 24 h for 6 days. Survivor mice were euthanized, and the brain, lungs, kidneys, spleen, and liver were procured for enzymatic and histopathological analysis in the liver and kidney. DL50 were 8.86 mg/kg for females and 11.77 mg/kg for males. The treatments with 3.0 mg/kg and 6.0 mg/kg significantly modified the phosphorylase, alanine transaminase, and γ-glutamyl transferase activities; however, an organ-specific response was detected. A significant dose-dependent decrease was observed in the kidney for ROS, while the liver had the opposite effect. Histopathological analysis revealed a significant elevation in hepatocytes' nuclei average size and total area (3 mg/kg), as well as centrilobular vein and adjacent sinusoidal capillaries showed a significant difference. The portal triad presented a significant difference in veins and capillarity count in 6 mg/kg. Renal samples showed cortex convoluted tubules' average size significantly augmented in both doses' groups, and tubule count was found augmented in 6 mg/kg. These physiological effects of NCTD can be exploited as treatment strategies if able to operate in an established posology and proper testing.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Rim , Masculino , Feminino , Camundongos , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003596

RESUMO

@#The aim of this study was to investigate the effect of norcantharidin (NCTD) on the proliferation and apoptosis of triple-negative breast cancer cell line MDA-MB-231.Western blot was used to detect the effect of NCTD on the expression levels of apoptosis-related proteins Bax/Bcl-2, cleaved-PARP/PARP/PARP, cleved-caspase-9, cleaved-caspase-3 and MCL-1 in MDA-MB-231 cells.Also, the expression levels of autophagy-related proteins LC3-II/LC3-I, Parkin and PINK1 in MDA-MB-231 cells were measured by Western blot.Flow cytometry was used to measure the effect of NCTD on the changes of mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS).The effect of NCTD on autophagy flow in cells expressing mCherry-EGFP-LC3 was detected by a confocal microscope.Moreover, the effects of NCTD combined with chloroquine (CQ) or 3-methyladenine (3-MA) on the apoptosis of MDA-MB-231 cells were detected by flow cytometry.The results showed that NCTD significantly increased the expression levels of Bax/Bcl-2, cleaved-PARP/PARP, cleaved-caspase-9, cleasved-caspase-3 and LC3-II/LC3-I proteins, and promoted the mitochondrial translocation of Parkin, and blocked the autophagic flow in MDA-MB-231 cells. Moreover, NCTD combined with CQ accelerated apoptosis, while NCTD combined with 3-MA decreased apoptosis.These results suggest that NCTD can induce autophagy accumulation and lead to apoptosis of MDA-MB-231 cells.

18.
J Nanobiotechnology ; 20(1): 509, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463199

RESUMO

Norcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Neoplasias , Estados Unidos , Sistemas de Liberação de Medicamentos , Meia-Vida , Disponibilidade Biológica , Neoplasias/tratamento farmacológico
19.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499054

RESUMO

Myeloid zinc finger 1 (MZF1), also known as zinc finger protein 42, is a zinc finger transcription factor, belonging to the Krüppel-like family that has been implicated in several types of malignancies, including glioblastoma multiforme (GBM). MZF1 is reportedly an oncogenic gene that promotes tumor progression. Moreover, higher expression of MZF1 has been associated with a worse overall survival rate among patients with GBM. Thus, MZF1 may be a promising target for therapeutic interventions. Cantharidin (CTD) has been traditionally used in Chinese medicine to induce apoptosis and inhibit cancer cell proliferation; however, the mechanism by which CTD inhibits cell proliferation remains unclear. In this study, we found that the expression of MZF1 was higher in GBM tissues than in adjacent normal tissues and low-grade gliomas. Additionally, the patient-derived GBM cells and GBM cell lines presented higher levels of MZF1 than normal human astrocytes. We demonstrated that CTD had greater anti-proliferative effects on GBM than a derivative of CTD, norcantharidin (NCTD). MZF1 expression was strongly suppressed by CTD treatment. Furthermore, MZF1 enhanced the proliferation of GBM cells and upregulated the expression of c-MYC, whereas these effects were reversed by CTD treatment. The results of our study suggest that CTD may be a promising therapeutic agent for patients with GBM and suggest a promising direction for further investigation.


Assuntos
Glioblastoma , Fatores de Transcrição Kruppel-Like , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Cantaridina/farmacologia , Proliferação de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Regulação Neoplásica da Expressão Gênica
20.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36558915

RESUMO

The norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes. The impact that structural modifications to these bicyclic compounds have on the antitumoral properties and the mechanisms by which these norbornene derivatives act are discussed in this review. In addition, the use of norbornene, and its related compounds, encapsulation in nanosystems for its use in cancer therapies is here detailed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...