Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Rep Med ; : 101630, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38955178

RESUMO

Recurrent high-grade gliomas (rHGGs) have a dismal prognosis, where the maximum tolerated dose (MTD) of IV terameprocol (5 days/month), a transcriptional inhibitor of specificity protein 1 (Sp1)-regulated proteins, is 1,700 mg/day with median area under the plasma concentration-time curve (AUC) of 31.3 µg∗h/mL. Given potentially increased efficacy with sustained systemic exposure and challenging logistics of daily IV therapy, here we investigate oral terameprocol for rHGGs in a multicenter, phase 1 trial (GATOR). Using a 3 + 3 dose-escalation design, we enroll 20 patients, with median age 60 years (range 31-80), 70% male, and median one relapse (range 1-3). Fasting patients tolerate 1,200 mg/day (n = 3), 2,400 mg/day (n = 6), 3,600 mg/day (n = 3), and 6,000 mg/day (n = 2) oral doses without major toxicities. However, increased dosage does not lead to increased systemic exposure, including in fed state (6,000 mg/day, n = 4), with maximal AUC <5 µg∗h/mL. These findings warrant trials investigating approaches that provide sustained systemic levels of transcription inhibitors to exploit their therapeutic potential. This study was registered at ClinicalTrials.gov (NCT02575794).

2.
Geroscience ; 46(2): 2239-2251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923874

RESUMO

The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.


Assuntos
Antioxidantes , Caenorhabditis , Animais , Humanos , Idoso , Antioxidantes/farmacologia , Masoprocol/farmacologia , Masoprocol/metabolismo , Caenorhabditis elegans/genética , Longevidade , Promoção da Saúde , Extratos Vegetais/farmacologia , Chá/metabolismo , Mamíferos
3.
Oral Dis ; 29(8): 3525-3539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437605

RESUMO

OBJECTIVES: Collagen fibrils from carious dentin matrix are prone to enzymatic degradation. This study investigates the feasibility and mechanism of nordihydroguaiaretic acid (NDGA), as a collagen crosslinker, to bio-modify the demineralized dentin matrix. METHODS: The physicochemical properties of the crosslinked dentin matrix were characterized by swelling ratio, ninhydrin assay, Fourier Transform Infrared spectroscopy, and atomic force microscopy. The collagenase degradation resistance was evaluated by measuring loss of dry mass, hydroproline release, loss of elasticity, and micro-nano structure integrity. The cytotoxicity of NDGA-crosslinked dentin collagen was evaluated by flow cytometry. RESULTS: NDGA crosslinked dentin matrix without destroying the integrity of collagen. Mechanistically, NDGA formed bisquinone bond between two adjacent o-quinone groups, resulting in NDGA polymeric matrix in which collagen fibrils were embedded. NDGA modification could significantly enhance the stiffness of dentin matrix at macro-nano scale. The NDGA-crosslinked dentin matrix exhibited remarkably low collagen degradation and sustained bulk elasticity after collagenase challenge, which were attributed to decreased water content, physical masking of collagenase bind sites on collagen, and improved stiffness of collagen fibrils. Notably, NDGA-crosslinked dentin matrix exhibited excellent biocompatibility. CONCLUSION: NDGA, as a biocompatible collagen crosslinker, improves the mechanical properties and biodegradation resistance of demineralized dentin matrix.


Assuntos
Colágeno , Colagenases , Masoprocol/análise , Masoprocol/química , Colagenases/análise , Colagenases/metabolismo , Dentina/química
4.
Acta Pharmaceutica Sinica ; (12): 946-953, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-978768

RESUMO

This study mainly explores the role of myeloid differentiation primary response protein 88 (MyD88) in tumorigenesis and development, to identify active compounds targeting MyD88. CRISPR/Cas9 system and xenograft tumor model were used to detect the effect of MyD88 deletion on tumor growth, and the experimental animal ethics review number was PZSHUTCM200828006. Microscale thermophoresis technology (MST) was used to identify compounds directly bind to MyD88 and further detect the impact of candidate small molecules on cell proliferation. Results showed that depletion of MyD88 significantly inhibited xenograft tumor growth of colon cancer, pancreatic cancer and skin cancer and the activity of NF-κB signaling pathway. MST showed that nordihydroguaiaretic acid (NDGA) bound to MyD88, with the binding dissociation constant Kd of 14.61 µmol·L-1. NDGA inhibited NF-κB reporting system activation and phosphorylation of p65, the key factor in NF-κB signal pathway. In addition, the results of colony formation assay showed that NDGA suppressed the proliferation of tumor cells. The above results show that, MyD88 is a potential therapeutic target for colon cancer, pancreatic cancer and skin cancer, NDGA directly binds to MyD88 and inhibits the activity of NF-κB signaling pathway, as well as inhibits the proliferation of pancreatic cancer, skin cancer and colon cancer cells.

5.
Phytomedicine ; 106: 154424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126544

RESUMO

BACKGROUND: Dengue virus (DENV) is considered one of the most important pathogens in the world causing 390 million infections each year. Currently, the development of vaccines against DENV presents some shortcomings and there is no antiviral therapy available for its infection. An important challenge is that both treatments and vaccines must be effective against all four DENV serotypes. Nordihydroguaiaretic acid (NDGA), isolated from Larrea divaricata Cav. (Zygophyllaceae) has shown a significant inhibitory effect on a broad spectrum of viruses, including DENV serotypes 2 and 4. PURPOSE: We evaluated the in vitro virucidal and antiviral activity of NDGA on DENV serotype 1 (DENV1), including the study of its mechanism of action, to provide more evidence on its antiviral activity. METHODS: The viability of viral particles was quantified by the plaque-forming unit reduction method. NDGA effects on DENV1 genome and viral proteins were evaluated by qPCR and immunofluorescence, respectively. Lysosomotropic activity was assayed using acridine orange and neutral red dyes. RESULTS: NDGA showed in vitro virucidal and antiviral activity against DENV1. The antiviral effect would be effective within the first 2 h after viral internalization, when the uncoating process takes place. In addition, we determined by qPCR that NDGA decreases the amount of intracellular RNA of DENV1 and, by immunofluorescence, the number of cells infected. These results indicate that the antiviral effect of NDGA would have an intracellular mechanism of action, which is consistent with its ability to be incorporated into host cells. Considering the inhibitory activity of NDGA on the cellular lipid metabolism, we compared the antiviral effect of two inhibitors acting on two different pathways of this type of metabolism: 1) resveratrol that inhibits the sterol regulatory element of binding proteins, and 2) caffeic acid that inhibits the 5-lipoxygenase (5-LOX) enzyme. Only caffeic acid produced an inhibitory effect on DENV1 infection. We studied the lysosomotropic activity of NDGA on host cells and found, for the first time, that this compound inhibited the acidification of cell vesicles which would prevent DENV1 uncoating process. CONCLUSION: The present work contributes to the knowledge of NDGA activity on DENV. We describe its activity on DENV1, a serotype different to those that have been already reported. Moreover, we provide evidence on which stage/s of the viral replication cycle NDGA exerts its effects. We suggest that the mechanism of action of NDGA on DENV1 is related to its lysosomotropic effect, which inhibits the viral uncoating process.


Assuntos
Vírus da Dengue , Laranja de Acridina/farmacologia , Antivirais/farmacologia , Araquidonato 5-Lipoxigenase/genética , Ácidos Cafeicos , Corantes/farmacologia , Vírus da Dengue/fisiologia , Masoprocol/farmacologia , Vermelho Neutro/farmacologia , RNA , Resveratrol/farmacologia , Sorogrupo , Esteróis/farmacologia , Proteínas Virais , Replicação Viral
6.
Mol Biol Rep ; 49(11): 10499-10507, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36127524

RESUMO

BACKGROUND: Methylglyoxal (MGO) is a known toxic byproduct of glycolysis, with MGO-induced cytotoxicity believed to contribute to the pathogenesis of several diseases. Glyoxalase I (GLO1) is a key enzyme for eliminating MGO in mammalian cells, therefore, compounds affecting GLO1 activity are potential therapeutic agents for MGO-induced disorders. Previously, we found nordihydroguaiaretic acid (NDGA) as a potent GLO1 inhibitor. METHODS: The inhibitory characteristics of NDGA were determined spectrophotometrically with recombinant GLO1. NDGA-induced growth-inhibition and accumulation of MGO-derived advanced glycation end products (AGEs) were examined in EA.hy926 cells. RESULTS: NDGA showed significant inhibition of GLO1 enzymatic activity in a dose-dependent manner. Its Ki value was estimated to be 146-fold lower than that of myricetin, a known GLO1 inhibitor. The co-addition of MGO with NDGA to the cells resulted in significant growth inhibition, suggesting that MGO accumulation, sufficient to affect cell growth, was caused by NDGA inhibiting GLO1. These findings were supported by the observations that the addition of aminoguanidine, a typical MGO scavenger, significantly reversed cell-growth inhibition by co-addition of MGO with NDGA, and that an increase in intracellular MGO-derived AGEs was observed during incubation with the co-addition of MGO with NDGA. CONCLUSION: NDGA was found to be a novel and potent inhibitor of GLO1. The co-addition of NDGA with MGO to the cells resulted in increased intracellular MGO accumulation followed by enhanced cell-growth inhibition.


Assuntos
Lactoilglutationa Liase , Masoprocol , Aldeído Pirúvico , Proliferação de Células , Lactoilglutationa Liase/antagonistas & inibidores , Óxido de Magnésio , Masoprocol/farmacologia , Aldeído Pirúvico/metabolismo , Humanos , Linhagem Celular
7.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408257

RESUMO

In this study, we demonstrate that Raman microscopy combined with computational analysis is a useful approach to discriminating accurately between brain tumor bio-specimens and to identifying structural changes in glioblastoma (GBM) bio-signatures after nordihydroguaiaretic acid (NDGA) administration. NDGA phenolic lignan was selected as a potential therapeutic agent because of its reported beneficial effects in alleviating and inhibiting the formation of multi-organ malignant tumors. The current analysis of NDGA's impact on GBM human cells demonstrates a reduction in the quantity of altered protein content and of reactive oxygen species (ROS)-damaged phenylalanine; results that correlate with the ROS scavenger and anti-oxidant properties of NDGA. A novel outcome presented here is the use of phenylalanine as a biomarker for differentiating between samples and assessing drug efficacy. Treatment with a low NDGA dose shows a decline in abnormal lipid-protein metabolism, which is inferred by the formation of lipid droplets and a decrease in altered protein content. A very high dose results in cell structural and membrane damage that favors transformed protein overexpression. The information gained through this work is of substantial value for understanding NDGA's beneficial as well as detrimental bio-effects as a potential therapeutic drug for brain cancer.


Assuntos
Glioblastoma , Antioxidantes , Glioblastoma/tratamento farmacológico , Humanos , Masoprocol/farmacologia , Masoprocol/uso terapêutico , Fenilalanina , Espécies Reativas de Oxigênio
8.
Phytomedicine ; 98: 153946, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35158237

RESUMO

BACKGROUND: Colistin (polymyxin E) is an effective antibiotic for the treatment of most multidrug-resistant Gram-negative bacteria. However, some bacteria, including bacterial spp. belonging to the Enterobacteriaceae family, have an acquired resistance against polymyxins, which is attributed to they possess plasmid-carried resistance genes (mcr-1 and its variants). So, there is an urgent need to develop new therapeutic strategies to target broad spectrum resistant spp. from Enterobacteriaceae family in response to the loss of the protective barrier of last-line antibiotics. Here, we report the adjuvant capacity of nordihydroguaiaretic acid (NDGA) for restoring the antibacterial activity of colistin against MCR-1-positive E. coli ZJ487 in vivo/in vitro. METHODS: A checkerboard assay, time-killing analysis, isobolograms, growth curves and inducible resistance test showed the effect of NDGA combined with colistin in vitro. TLC was used to detect the inhibitory effect of NDGA on MCR-1. Colony determination and hematoxylin and eosin (HE) staining were used to assess the synergistic effect of NDGA and colistin in mice. RESULTS: Our results showed that NDGA in combination with colistin showed a synergistic bactericidal action without inducing resistance. NDGA directly inhibited MCR-1 activity and resulted in measurable injury to the bacterial cell membrane to recover the antibacterial effect of colistin. Most importantly, NDGA in combination with colistin exhibited an in vivo synergistic effect in murine peritonitis infection models, as evidenced by the survival rate of MCR-1-positive E. coli ZJ487-infected mice which increased from 6.67 to 50.0%. CONCLUSION: Our study demonstrated that NDGA effectively rescues the efficiency of colistin against MCR-positive E. coli ZJ487 by simultaneously inhibiting both, the MCR activity and the injury to the cell membrane of bacteria.

9.
Eur J Pharmacol ; 919: 174777, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085517

RESUMO

Acute lung injury (ALI) is a continuum of pulmonary changes caused by various lung insults. Previously, we synthesized a series of nordihydroguaiaretic acid analogs; of these, compound 3a exhibited excellent antioxidant capacity in a murine model of middle cerebral artery occlusion. However, it remains unclear whether compound 3a can modulate lipopolysaccharide (LPS)-induced ALI. ALI was induced via tracheal LPS administration, and the pathological changes were assessed. The level of inflammation was verified by immunofluorescence and immunohistochemical analyses. Apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick-end labeling assays and Western blotting. Changes in the levels of mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) pathway proteins were assessed by immunofluorescence assays and Western blotting. In vitro, RAW 264.7 cells were treated with compound 3a prior to LPS challenge, and the intracellular level of inflammation was assessed by quantitative PCR (qPCR). Relevant proteins were detected via immunofluorescence assays and Western blotting. Mice developed extensive lung inflammation by 24 h after LPS challenge. Histological examination revealed signs typical of ALI. Preadministration of compound 3a markedly ameliorated the histopathological changes and reduced fluid exudation into the alveolar space. Compound 3a also greatly reduced the levels of inflammation and apoptosis both in vivo and in vitro. Moreover, compound 3a markedly reduced phosphorylation of MAPK/NF-κB pathway-related proteins and p65 translocation, consistent with the in vitro observations. In summary, administration of compound 3a prior to LPS suppressed ALI via inhibition of the MAPK/NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Masoprocol/farmacologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Masoprocol/química , Masoprocol/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Células RAW 264.7/efeitos dos fármacos
10.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916785

RESUMO

Nordihydroguaiaretic acid (NDGA) is a major lignan metabolite found in Larrea spp., which are widely used in South America to treat various diseases. In breast tissue, estradiol is metabolized to the catechol estrogens such as 4-hydroxyestradiol (4-OHE2), which have been proposed to be cancer initiators potentially involved in mammary carcinogenesis. Catechol-O-methyltransferase (COMT) catalyzes the O-methylation of catechol estrogens to their less toxic methoxy derivatives, such as 4-O-methylestradiol (4-MeOE2). The present study investigated the novel biological activities of NDGA in relation to COMT and the effects of COMT inhibition by NDGA on 4-OHE2-induced cyto- and genotoxicity in MCF-7 human breast cancer cells. Two methoxylated metabolites of NDGA, 3-O-methylNDGA (3-MNDGA) and 4-O-methyl NDGA (4-MNDGA), were identified in the reaction mixture containing human recombinant COMT, NDGA, and cofactors. Km values for the COMT-catalyzed metabolism of NDGA were 2.6 µM and 2.2 µM for 3-MNDGA and 4-MNDGA, respectively. The COMT-catalyzed methylation of 4-OHE2 was inhibited by NDGA at an IC50 of 22.4 µM in a mixed-type mode of inhibition by double reciprocal plot analysis. Molecular docking studies predicted that NDGA would adopt a stable conformation at the COMT active site, mainly owing to the hydrogen bond network. NDGA is likely both a substrate for and an inhibitor of COMT. Comet and apurinic/apyrimidinic site quantitation assays, cell death, and apoptosis in MCF-7 cells showed that NDGA decreased COMT-mediated formation of 4-MeOE2 and increased 4-OHE2-induced DNA damage and cytotoxicity. Thus, NDGA has the potential to reduce COMT activity in mammary tissues and prevent the inactivation of mutagenic estradiol metabolites, thereby increasing catechol estrogen-induced genotoxicities.


Assuntos
Inibidores de Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Estrogênios de Catecol/metabolismo , Masoprocol/metabolismo , Masoprocol/farmacologia , Mutagênicos/toxicidade , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Dano ao DNA , Estrogênios de Catecol/química , Estrogênios de Catecol/farmacologia , Humanos , Células MCF-7 , Masoprocol/química , Metilação , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/efeitos dos fármacos
11.
Antiviral Res ; 187: 104976, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444704

RESUMO

The genus Orthobunyavirus are a group of viruses within arbovirus, with a zoonotic cycle, some of which could lead to human infection. A characteristic of these viruses is their lack of antiviral treatment or vaccine for its prevention. The objective of this work was to study the in vitro antiviral activity of nordihydroguaiaretic acid (NDGA), the most important active compound of Larrea divaricata Cav. (Zigophyllaceae), against Fort Sherman virus (FSV) as a model of Orthobunyavirus genus. At the same time, the effect of NDGA as a lipolytic agent on the cell cycle of this viral model was assessed. The method of reducing plaque forming units on LLC-MK2 cells was used to detect the action of NDGA on CbaAr426 and SFCrEq231 isolates of FSV. NDGA did not show virucidal effect, but it had antiviral activity with a similar inhibition in both isolates, which was dose dependent. It was established that the NDGA has a better inhibition 1-h post-internalization (p.i.), showing a different behavior in each isolate, which was dependent upon the time p.i. Since virus multiplication is dependent on host cell lipid metabolism, the antiviral effect of NDGA has been previously related to its ability to disturb the lipid metabolism, probably by interfering with the 5-lipoxigenase (5-LOX) and the sterol regulatory element-binding proteins (SREBP) pathway. We determined by using caffeic acid, a 5-LOX inhibitor, that the inhibition of this enzyme negatively affected the FSV replication; and by means of resveratrol, a SREBP1 inhibitor, it was showed that the negative regulation of this pathway only had action on the SFCrEq231 reduction. In addition, it was proved that the NDGA acts intracellularly, since it showed the ability to incorporate into LLC-MK2 cells. The information provided in this work converts the NDGA into a compound with antiviral activity in vitro against FSV (Orthobunyavirus), which can be subjected to structural modifications in the future to improve the activity.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Masoprocol/farmacologia , Orthobunyavirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Relação Dose-Resposta a Droga , Haplorrinos , Viabilidade Microbiana , Orthobunyavirus/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo
12.
Front Pharmacol ; 11: 518068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041789

RESUMO

Aberrant fibroblast growth factor receptor-1 (FGFR1), a key driver promoting gastric cancer (GC) progression and chemo-resistance, has been increasingly recognized as a potential therapeutic target in GC. Hereon, we designed and synthesized a series of asymmetric analogues using Af23 and NDGA as lead compounds by retaining the basic structural framework (bisaryl-1,4-dien-3-one) and the unilateral active functional groups (3,4-dihydroxyl). Thereinto, Y14 showed considerable inhibitory activity against FGFR1. Next, pharmacological experiments showed that Y14 could significantly inhibit the phosphorylation of FGFR1 and its downstream kinase AKT and ERK, thus inhibiting the growth, survival, and migration of gastric cancer cells. Furthermore, compared with 5-FU treatment alone, the combination of Y14 and 5-FU significantly reduced the phosphorylation level of FGFR1, and enhanced the anti-cancer effect by inhibiting the viability and colony formation in two gastric cancer cell lines. These results confirmed that Y14 exerted anti-gastric activity and chemosensitizing effect by inhibiting FGFR1 phosphorylation and its downstream signaling pathway in vitro. This work also provides evidence that Y14, an effective FGFR1 inhibitor, could be used alone or in combination with chemotherapy to treat gastric cancer in the future.

13.
J Nanobiotechnology ; 18(1): 74, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410712

RESUMO

BACKGROUND: Nordihydroguaiaretic acid (NDGA) is a plant lignan obtained from creosote bush, known to possess anti-oxidant, anti-cancer and anti-viral activities and is being used in traditional medicine. However, toxicity studies indicated liver and kidney damage despite its immense medicinal properties. There has been a recent increase of curiosity in the chemical synthesis of NDGA derivatives for therapeutic applications. NDGA derivatives have been developed as better alternatives to NDGA and for targeted delivery to the site of tissue by chemical derivatives. In this regard, an analog of NDGA, Acetyl NDGA (Ac-NDGA), has been synthesized based on a previous procedure and formulated as a nanostructured complex with Polycaprolactone/Polyethylene glycol polymer matrices, by o/w solvent evaporation method. RESULTS: The drug-incorporated polymeric nanospheres exhibited a drug load of 10.0 ± 0.5 µg drug per mg of nanospheres in acetonitrile solvent with 49.95 ± 10% encapsulation efficiency and 33-41% drug loading capacity with different batches of nanospheres preparation. The in vitro drug release characteristics indicated 82 ± 0.25% drug release at 6 h in methanol. Further, the nanospheres have been characterized extensively to evaluate their suitability for therapeutic delivery. CONCLUSIONS: The present studies indicate a new and efficient formulation of the nanostructured AcNDGA with good therapeutic potential.


Assuntos
Antioxidantes , Masoprocol , Nanoestruturas/química , Polímeros/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Masoprocol/química , Masoprocol/farmacocinética , Masoprocol/farmacologia , Teste de Materiais , Tamanho da Partícula
14.
Curr Cancer Drug Targets ; 20(2): 86-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31642411

RESUMO

Nordihydroguaiaretic acid (NDGA) is a plant lignan obtained from creosote bush, Larrea tridentata and is known to possess antioxidant, anticancer activities and is used in traditional medicine in North America and Mexico. However, its prolonged consumption leads to liver damage and kidney dysfunction. Despite its toxicity and side effects, there is little awareness to forbid its consumption and its use in the treatment of medical ailments has continued over the years. Several reports discuss its therapeutic efficiency and its medical applications have tremendously been on the rise to date. There has been a recent surge of interest in the chemical synthesis of NDGA derivatives for therapeutic applications. NDGA derivatives have been developed as better alternatives to NDGA. Although several NDGA derivatives have been chemically synthesized as evidenced by recent literature, there is a paucity of information on their therapeutic efficacies. This review is to highlight the medicinal applications of NDGA, its toxicity evaluations and discuss the chemical derivatives of NDGA synthesized and studied so far and suggest to continue research interests in the development of NDGA analogs for therapeutic applications. We suggest that NDGA derivatives should be investigated more in terms of chemical synthesis with preferred conformational structures and exploit their biological potentials with future insights to explore in this direction to design and develop structurally modified NDGA derivatives for potential pharmacological properties.


Assuntos
Masoprocol/farmacologia , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masoprocol/síntese química , Masoprocol/uso terapêutico , Masoprocol/toxicidade , Conformação Molecular
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-846495

RESUMO

Objective: To evaluate the effect of nordihydroguaiaretic acid (NDGA) on ceftazidime resistance of Pseudomonas aeruginosa mediated by efflux pump system MexCD-OprJ and explore its mechanism. Methods: The bacterial solution with a concentration of 0.5 mcburney was diluted and inoculated in a 96-well plate, and NDGA and ceftazidime were added by the checkerboard dilution method. At the same time, the untreated control group, NDGA control group and ceftazidime control group were set; After being cultured for 24 h, the absorbance was measured by an enzyme micro-plate reader, the minimum inhibitory concentration (MIC) of each drug was recorded and the bacteriostatic rate and fractional inhibitory concentration (FIC) index were calculated. Bacteria were inoculated with the bacterial liquid coating method in the 96-well plates, and the bacterial colony number was counted after 24 h of culture. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the gene expressions of efflux pump membrane protein MexC, MexD, OprJ and nfxB. Results: Compared with ceftazidime or NDGA alone, combination of ceftazidime and NDGA significantly inhibited the growth of efflux pump system MexCD-OprJ-mediated ceftazidime-resistant P. aeruginosa (P < 0.05); The pharmacological effects of ceftazidime and NDGA showed synergistic or additive effects; After combined administration, the MIC values of ceftazidime and NDGA were significantly decreased, and the MIC value of some ceftazidime had no significant difference from that of ceftazidime-sensitive P. aeruginosa; Compared with ceftazidime alone, the gene expressions of efflux pump membrane proteins MexC, MexD and OprJ were significantly decreased after combined application of ceftazidime and NDGA (P < 0.05), while the expression of nfxB was significantly increased (P < 0.05). Conclusion: The mechanism of NDGA on ceftazidime resistance of P. aeruginosa mediated by efflux pump system MexCD-OprJ is related to its ability to down-regulate the gene expression of efflux pump membrane proteins MexC, MexD and OprJ, and up-regulate the gene expression of the negative regulatory gene nfxB of the above three proteins.

16.
Mol Cell Endocrinol ; 498: 110538, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415794

RESUMO

Creosote bush (Larrea tridentata)-derived nordihydroguaiaretic acid (NDGA) was shown to have profound effects on the core components of metabolic syndrome. This study investigated the in vivo potential of NDGA for prevention or attenuation of the pathophysiologic abnormalities of NASH. A novel dietary NASH model with feeding C57BL/6J mice with a high trans-fat, high cholesterol and high fructose (HTF) diet, was used. The HTF diet fed mice exhibited obesity, insulin resistance, hepatic steatosis, fibrosis, inflammation, ER stress, oxidative stress, and liver injury. NDGA attenuated these metabolic abnormalities as well as hepatic steatosis and fibrosis together with attenuated expression of genes encoding fibrosis, progenitor and macrophage markers with no effect on the levels of mRNAs for lipogenic enzymes. NDGA increased expression of fatty acid oxidation genes. In conclusion, NDGA exerts anti-NASH/anti-fibrotic actions and raises the therapeutic potential of NDGA for treatment of NASH patients with fibrosis and other associated complications.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/prevenção & controle , Inflamação/prevenção & controle , Resistência à Insulina , Masoprocol/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/prevenção & controle , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Larrea/química , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Estresse Oxidativo/efeitos dos fármacos
17.
Int J Mol Sci ; 20(12)2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31234537

RESUMO

Lipoprotein lipase (LPL) hydrolyzes triglycerides in lipoprotein to supply fatty acids, and its deficiency leads to hypertriglyceridemia, thereby inducing metabolic syndrome (MetSyn). Nordihydroguaiaretic acid (NDGA) has been recently reported to inhibit LPL secretion by endoplasmic reticulum (ER)-Golgi redistribution. However, the role of NDGA on dyslipidemia and MetSyn remains unclear. To address this question, leptin receptor knock out (KO)-db/db mice were randomly assigned to three different groups: A normal AIN76-A diet (CON), a Western diet (WD) and a Western diet with 0.1% NDGA and an LPL inhibitor, (WD+NDGA). All mice were fed for 12 weeks. The LPL inhibition by NDGA was confirmed by measuring the systemic LPL mass and adipose LPL gene expression. We investigated whether the LPL inhibition by NDGA alters the metabolic phenotypes. NDGA led to hyperglycemia, hypertriglyceridemia, and hypercholesterolemia. More strikingly, the supplementation of NDGA increased the percentage of high density lipoprotein (HDL)small (HDL3a+3b+3c) and decreased the percentage of HDLlarge (HDL2a+2b) compared to the WD group, which indicates that LPL inhibition modulates HDL subclasses. was NDGA increased adipose inflammation but had no impact on hepatic stress signals. Taken together, these findings demonstrated that LPL inhibition by NDGA aggravates metabolic parameters and alters HDL particle size.


Assuntos
Lipase Lipoproteica/antagonistas & inibidores , Lipoproteínas HDL/metabolismo , Masoprocol/farmacologia , Animais , Dieta Ocidental , Masculino , Camundongos , Camundongos Knockout , Tamanho da Partícula , Receptores para Leptina/genética
18.
Lipids Health Dis ; 18(1): 43, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736810

RESUMO

BACKGROUND: Diabetic encephalopathy is a chronic complications of diabetes mellitus that affects the central nervous system. We evaluated the effect of ω3 and ω6 polyunsaturated fatty acids (PUFAs) supplementation plus the antioxidant agent nordihydroguaiaretic acid (NDGA) on the etiopathology of diabetic encephalopathy in eSS rats, a spontaneous model of type 2 diabetes. METHODS: One hundred twenty spontaneous diabetic eSS male rats and 38 non-diabetic Wistar, used as healthy control, received monthly by intraperitoneal route, ω3 or ω6 PUFA (6.25 mg/kg) alone or plus NDGA (1.19 mg/kg) for 12 months. Diabetic rats had a worse performance in behavioural Hole-Board test. Histopathological analysis confirmed lesions in diabetic rats brain tissues. We also detected low expression of synaptophysin, a protein linked to release of neurotransmitters, by immunohistochemically techniques in eSS rats brain. Biochemical and histopathological studies of brain were performed at 12th month. Biochemical analysis showed altered parameters related to metabolism. High levels of markers of oxidative stress and inflammation were detected in plasma and brain tissues. Data were analysed by ANOVA test and paired t test was used by comparison of measurements of the same parameter at different times. RESULTS: The data obtained in this work showed that behavioural, biochemical and morphological alterations observed in eSS rats are compatible with previously reported indices in diabetic encephalopathy and are associated with increased glucolipotoxicity, chronic low-grade inflammation and oxidative stress burden. Experimental treatments assayed modulated the values of studied parameters. CONCLUSIONS: The treatments tested with ω3 or ω3 plus NDGA showed improvement in the values of the studied parameters in eSS diabetic rats. These observations may form the basis to help in prevent and manage the diabetic encephalopathy.


Assuntos
Encefalopatias/etiologia , Neuropatias Diabéticas/prevenção & controle , Ácidos Graxos Ômega-3/uso terapêutico , Masoprocol/uso terapêutico , Animais , Glicemia/análise , Encéfalo/patologia , Encefalopatias/patologia , Encefalopatias/prevenção & controle , Neuropatias Diabéticas/patologia , Suplementos Nutricionais , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Hipocampo/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
19.
Enzyme Microb Technol ; 120: 69-76, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30396401

RESUMO

Nordihydroguaiaretic acid (NDGA) is the major lignan of the creosote bush Larrea tridentata known for its antioxidative and pharmacological properties. Here we present the identification of glucansucrases for NDGA glucosylation and the physicochemical and biological characterization of the glucosides. Extracellular glucansucrase of L. pseudomesenteroides DSM 20193 was selected from 19 glucansucrase positive Leuconostoc and Weissella strains. Kinetic analysis of the PEG-fractionated enzyme revealed a KM of 6.6 mM and a kcat of 2.6 s-1 for NDGA. Full-factorial design methodology was used to optimize conversion resulting in 95.5% total NDGA glucosides. In total 7 glucosides were detected by LC-MS ranging from mono- to triglucoside. The 4-O-α-D-monoglucoside and the symmetrical 4,4'-O-α-D-diglucoside were the major products in all biotransformations. Water solubility and half-life stability at 45 °C increased significantly in the order diglucoside > monoglucoside > aglycon. Analysis of cellular antioxidative capacity exhibited a time-dependent activity increase pointing towards glucoside hydrolysis. Accordingly, NDGA-glucosides impaired metastasis of triple negative breast cancer cells to the same degree as the aglycon with 35% reduction of cell migration by the mono- and 34% reduction by the diglucoside after 20 h.


Assuntos
Antioxidantes/farmacologia , Glucosídeos/síntese química , Glucosídeos/farmacologia , Glicosiltransferases/metabolismo , Larrea/enzimologia , Masoprocol/química , Neoplasias de Mama Triplo Negativas/patologia , Antioxidantes/síntese química , Movimento Celular , Feminino , Humanos , Glucosídeos Iridoides , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células Tumorais Cultivadas
20.
Int J Biol Macromol ; 122: 479-484, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30416092

RESUMO

This study demonstrates the antiglycation activity of Nordihydroguaiaretic acid, a lignin from the creosote bush (Larrea tridentate), which has also been proven to assist in the treatment of cancer, neurological disorders, and cardiovascular complications. We determined the antiglycation activity of NDG based on spectroscopic analysis, molecular interactions and circular dichroism studies with albumin. It was also seen that NDG inhibits the aggregation of albumin, after glycation, using Thioflavin T binding and confocal imaging. Results suggest that NDG is a potent inhibitor of advanced glycation end products formation. NDG was found to impart protective effects on albumin by preventing glycation modification of lysine residues (Lys20, Phe36, Lys41, Lys131, and Lys132) due to glycation.


Assuntos
Masoprocol/farmacologia , Agregados Proteicos/efeitos dos fármacos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Glicosilação/efeitos dos fármacos , Masoprocol/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...