Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Curr Pharm Des ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38835123

RESUMO

INTRODUCTION: Age-related macular degeneration (AMD) is one of the common diseases that cause vision loss in the elderly, and oxidative stress has been considered a major pathogenic factor for AMD. Modified Danggui Buxue Decoction (RRP) has a good therapeutic effect on non-proliferatic diabetic retinopathy and can improve the clinical symptoms of patients. AIM: This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments. METHODS: A total of 15 key active components included in RRP interacted with 57 core targets related to retinal oxidative damage (such as AKT1, NFE2L2, HMOX1), mainly involved in the AGE-RAGE signaling pathway in diabetic complications, PI3K-AKT signaling pathway and so on. Further studies in vivo found that RRP improved the retinal oxidative damage, increased the content of SOD and GSH, decreased the content of MDA in mouse serum, promoted the expression of p-PI3K, p-AKT, Nrf2, HO-1 and NQO1 proteins in the mouse retina, and inhibited the expression of Nrf2 in the cytoplasm. RESULTS: This study revealed that RRP had a protective effect on oxidative damage of the retina in mice, and might exert anti-oxidative effect by activating the PI3K/Akt/Nrf2 signal pathway. CONCLUSION: This study provided scientific data for the further development of hospital preparations of RRP, and a good theoretical basis for the clinical application of RRP.

2.
J Inflamm Res ; 17: 3825-3838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903877

RESUMO

Background: Intervertebral disc degeneration (IDD) underlies the pathogenesis of degenerative diseases of the spine; however, its exact molecular mechanism is unclear. Purpose: To explore the molecular mechanism of mechanical pressure (MP)-induced IDD and to assess the role and mechanism of Rosuvastatin (RSV) inhibits MP-induced IDD. Methods: SD rat nucleus pulposus cells (NPCs) were cultured in vitro and an apoptosis model of NPCs was constructed using MP. Proliferative activity, reactive oxygen species content, apoptosis, and wound healing were detected in each group of NPCs, respectively. The expression of relevant proteins was detected by qPCR and Western Blot techniques. 18 SD rats were randomly divided into control, pressure and RSV groups. Elisa, qPCR, Western Blot and immunohistochemical staining techniques were used to detect changes in the content of related proteins in the intervertebral discs of each group. HE staining and Modified Saffron-O and Fast Green Stain Kit were used to assess IDD in each group. Results: MP treatment at 1.0 MPa could significantly induce apoptosis of NPCs after 24 h. MP could significantly inhibit the proliferative activity and wound healing ability of NPCs, and increase the intracellular reactive oxygen species content and apoptosis rate; pretreatment with RSV could significantly activate the Nrf2/HO-1 signaling pathway and reverse the cellular damage caused by MP; when inhibit the Nrf2/HO-1 signaling pathway activation, the protective effect of RSV was reversed. In vivo MP could significantly increase the content of inflammatory factors within the IVD and promote the degradation of extracellular matrix, leading to IDD. When the intervention of RSV was employed, it could significantly activate the Nrf2/HO-1 signaling pathway and improve the above results. Conclusion: RSV may inhibit MP-induced NPCs damage and IDD by activating the Nrf2/HO-1 signaling pathway.

3.
Front Immunol ; 15: 1375340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711519

RESUMO

Allergic asthma is a widely prevalent inflammatory condition affecting people across the globe. T cells and their secretory cytokines are central to the pathogenesis of allergic asthma. Here, we have evaluated the anti-inflammatory impact of dimethyl fumarate (DMF) in allergic asthma with more focus on determining its effect on T cell responses in allergic asthma. By utilizing the ovalbumin (OVA)-induced allergic asthma model, we observed that DMF administration reduced the allergic asthma symptoms and IgE levels in the OVA-induced mice model. Histopathological analysis showed that DMF treatment in an OVA-induced animal model eased the inflammation in the nasal and bronchial tissues, with a particular decrease in the infiltration of immune cells. Additionally, RT-qPCR analysis exhibited that treatment of DMF in an OVA-induced model reduced the expression of inflammatory cytokine (IL4, IL13, and IL17) while augmenting anti-inflammatory IL10 and Foxp3 (forkhead box protein 3). Mechanistically, we found that DMF increased the expression of Foxp3 by exacerbating the expression of nuclear factor E2-related factor 2 (Nrf2), and the in-vitro activation of Foxp3+ Tregs leads to an escalated expression of Nrf2. Notably, CD4-specific Nrf2 deletion intensified the allergic asthma symptoms and reduced the in-vitro iTreg differentiation. Meanwhile, DMF failed to exert protective effects on OVA-induced allergic asthma in CD4-specific Nrf2 knock-out mice. Overall, our study illustrates that DMF enhances Nrf2 signaling in T cells to assist the differentiation of Tregs, which could improve the anti-inflammatory immune response in allergic asthma.


Assuntos
Asma , Fumarato de Dimetilo , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Linfócitos T Reguladores , Animais , Feminino , Camundongos , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Citocinas/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Ovalbumina/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1611-1620, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621946

RESUMO

This study investigated the protective effect of tanshinone Ⅱ_A(TSⅡ_A) on the liver in the rat model of non-alcoholic fatty liver disease(NAFLD) and the mechanism of TSⅡ_A in regulating ferroptosis via the nuclear factor E2-related factor 2(Nrf2) signaling pathway. The rat model of NAFLD was established with a high-fat diet for 12 weeks. The successfully modeled rats were assigned into model group, low-and high-dose TSⅡ_A groups, and inhibitor group, and normal control group was set. Enzyme-linked immunosorbent assay was employed to determine the content of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum of rats in each group. A biochemical analyzer was used to measure the content of aspartate aminotransferase(AST), alaninl aminotransferase(ALT), total cholesterol(TC), and triglycerides(TG). Hematoxylin-eosin(HE) staining was used to detect pathological damage in liver tissue. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling(TUNEL) was employed to examine the apoptosis of the liver tissue. Oil red O staining, MitoSOX staining, and Prussian blue staining were conducted to reveal lipid deposition, the content of reactive oxygen species(ROS), and iron deposition in liver tissue. Western blot was employed to determine the expression of Nrf2, heme oxygenase-1(HO-1), glutathione peroxidase 4(GPX4), ferroptosis suppressor protein 1(FSP1), B cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) in the liver tissue. The result showed that TSⅡ_A significantly reduced the content of MDA, AST, ALT, TC, and TG in the serum, increased the activity of SOD, decreased the apoptosis rate, lipid deposition, ROS, and iron deposition in the liver tissue, up-regulated the expression of Nrf2, HO-1, FSP1, GPX, and Bcl-2, and inhibited the expression of Bax in the liver tissue of NAFLD rats. However, ML385 partially reversed the protective effect of TSⅡ_A on the liver tissue. In conclusion, TSⅡ_A could inhibit ferroptosis in the hepatocytes and decrease the ROS and lipid accumulation in the liver tissue of NAFLD rats by activating the Nrf2 signaling pathway.


Assuntos
Abietanos , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fígado , Transdução de Sinais , Triglicerídeos/metabolismo , Superóxido Dismutase/metabolismo , Ferro/metabolismo
5.
Antioxidants (Basel) ; 13(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38671940

RESUMO

Doxorubicin (DOX)-induced cardiotoxicity (DIC) is a life-threatening clinical issue with limited preventive approaches, posing a substantial challenge to cancer survivors. The anthraquinone diacerein (DCN) exhibits significant anti-inflammatory, anti-proliferative, and antioxidant actions. Its beneficial effects on DIC have yet to be clarified. Therefore, this study investigated DCN's cardioprotective potency and its conceivable molecular targets against DIC. Twenty-eight Wister rats were assigned to CON, DOX, DCN-L/DOX, and DCN-H/DOX groups. Serum cardiac damage indices, iron assay, oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis, ferritinophagy, and ferroptosis-related biomarkers were estimated. Nuclear factor E2-related factor 2 (NRF2) DNA-binding activity and phospho-p53 immunoreactivity were assessed. DCN administration effectively ameliorated DOX-induced cardiac cytomorphological abnormalities. Additionally, DCN profoundly combated the DOX-induced labile iron pool expansion alongside its consequent lethal lipid peroxide overproduction, whereas it counteracted ferritinophagy and enhanced iron storage. Indeed, DCN valuably reinforced the cardiomyocytes' resistance to ferroptosis, mainly by restoring the NRF2/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling axis. Furthermore, DCN abrogated the cardiac oxidative damage, inflammatory response, ER stress, and cardiomyocyte apoptosis elicited by DOX. In conclusion, for the first time, our findings validated DCN's cardioprotective potency against DIC based on its antioxidant, anti-inflammatory, anti-ferroptotic, and anti-apoptotic imprint, chiefly mediated by the NRF2/SLC7A11/GPX4 axis. Accordingly, DCN could represent a promising therapeutic avenue for patients under DOX-dependent chemotherapy.

6.
Free Radic Biol Med ; 217: 116-125, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548187

RESUMO

PURPOSE: Ferroptosis has recently been recognized as a mechanism of cerebral ischemia-reperfusion (I/R) injury, attributed to blood-brain barrier (BBB) disruption. Edaravone dexboneol (Eda.B) is a novel neuroprotective agent widely employed in ischemic stroke, which is composed of edaravone (Eda) and dexborneol. This study aimed to investigate the protective effects of Eda.B on the BBB in cerebral I/R and explore its potential mechanisms. METHODS: Transient middle cerebral artery occlusion (tMCAO) Sprague-Dawley-rats model was used. Rats were randomly assigned to sham-operated group (sham, n = 20), model group (tMCAO, n = 20), Eda.B group (Eda.B, n = 20), Eda group (Eda, n = 20) and dexborneol group (dexborneol, n = 20), and Eda.B + Zinc protoporphyria group (Eda.B + ZnPP, n = 5). Infarct area, cellular apoptosis and neurofunctional recovery were accessed through TTC staining, TUNEL staining, and modified Garcia scoring system, respectively. BBB integrity was evaluated via Evans blue staining. Nuclear factor E2 related factor 2 (Nrf-2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling were qualified by Western blot. Transmission electron microscopy (TEM) revealed alterations in ipsilateral brain tissue among groups. Glutathione (GSH) and malondialdehyde (MDA) levels, and Fe2+ tissue content determination were detected. RESULTS: Eda.B effectively improved neurological deficits, diminished infarct area and cellular apoptosis, as well as ameliorated BBB integrity in tMCAO rats. Further, Eda.B significantly inhibited ferroptosis, as evidenced by ameliorated pathological features of mitochondria, down-regulated of MDA and Fe2+ levels and up-regulated GSH content. Mechanistically, Eda.B attenuated BBB disruption via Nrf-2-mediated ferroptosis, promoting nuclear translocation of Nrf-2, increasing HO-1, GPX4 expression, alleviating the loss of zonula occludens 1 (ZO-1) and occludin as well as decreasing 4-hydroxynonenal (4-HNE) level. CONCLUSIONS: This study revealed for the first time that Eda.B safeguarded the BBB from cerebral I/R injury by inhibiting ferroptosis through the activation of the Nrf-2/HO-1/GPX4 axis, providing a novel insight into the neuroprotective effect of Eda.B in cerebral I/R.


Assuntos
Isquemia Encefálica , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Barreira Hematoencefálica , Heme Oxigenase-1/metabolismo , Edaravone/farmacologia , Ratos Sprague-Dawley , Isquemia Encefálica/patologia , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Traumatismo por Reperfusão/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
7.
Cell Biochem Biophys ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536579

RESUMO

Cervical cancer (CC) is one of the severe cancers that pose a threat to women's health and result in death. CENPF, the centromere protein F, plays a crucial role in mitosis by regulating numerous cellular processes, such as chromosome segregation during mitosis. According to bioinformatics research, CENPF serves as a master regulator that is upregulated and activated in cervical cancer. Nevertheless, the precise biological mechanism that CENPF operates in CC remains unclear. The aim of this study was to analyze the function of CENPF on cervical cancer and its mechanism. We conducted immunohistochemistry and western blot analysis to examine the expression levels of CENPF in both cervical cancer tissues and cells. To explore the hidden biological function of CENPF in cell lines derived from CC, we applied lentivirus transfection to reduce CENPF manifestation. CENPF's main role is to regulate ferroptosis which was assessed by analyzing Reactive Oxygen Species (ROS), malonaldehyde (MDA), etc. The vitro findings were further validated through a subcutaneous tumorigenic nude mouse model. Our research finding indicates that there is an apparent upregulation of CENPF in not merely tumor tissues but also cell lines in the carcinomas of the cervix. In vitro and vivo experimental investigations have demonstrated that the suppression of CENPF can impede cellular multiplication, migration, and invasion while inducing ferroptosis. The ferroptosis induced by CENPF inhibition in cervical cancer cell lines is likely mediated through the Nrf2/HO-1 pathway. The data herein come up with the opinion that CENPF may have a crucial role in influencing anti-cervical cancer effects by inducing ferroptosis via the triggering of the Nrf2/HO-1 signaling pathway.

8.
Ann Hematol ; 103(7): 2405-2417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538975

RESUMO

Multiple myeloma (MM) is a common malignant hematologic neoplasm, and the involvement of epigenetic modifications in its development and drug resistance has received widespread attention. Ferroptosis, a new ferroptosis-dependent programmed death mode, is closely associated with the development of MM. The novel methyltransferase inhibitor DCG066 has higher cell activity, but its mechanism of action in MM has not been clarified. Here, we found that DCG066 (5µM) inhibited the proliferation and induced ferroptosis in MM cells; the intracellular levels of ROS, iron, and MDA were significantly elevated, and the level of GSH was reduced after the treatment of DCG066; The protein expression levels of SLC7A11, GPX4, Nrf2 and HO-1 were significantly reduced, and these phenomena could be reversed by ferroptosis inhibitor Ferrostatin-1 (Fer-1) and Nrf2 activator Tert-butyl hydroquinone (TBHQ). Meanwhile, the protein expression levels of Keap1 was increased, and heat shock proteins (HSP70, HSP90 and HSPB1) were reduced after DCG066 treatment. In conclusion, this study confirmed that DCG066 inhibits MM proliferation and induces ferroptosis via the Nrf2/HO-1 pathway.


Assuntos
Ferroptose , Heme Oxigenase-1 , Mieloma Múltiplo , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Ferroptose/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Antígenos de Histocompatibilidade
9.
Antioxidants (Basel) ; 13(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38397791

RESUMO

Infertility represents a significant global health challenge, affecting more than 12% of couples worldwide, and most cases of infertility are caused by male factors. Several pathological pathways are implicated in male infertility. The main mechanisms involved are driven by the loss of reduction-oxidation (redox) homeostasis and the resulting oxidative damage as well as the chronic inflammatory process. Increased or severe oxidative stress leads to sperm plasma membrane and DNA oxidative damage, dysregulated RNA processing, and telomere destruction. The signaling pathways of these molecular events are also regulated by Nuclear factor-E2-related factor 2 (Nrf2). The causes of male infertility, the role of oxidative stress in male infertility and the Keap1-Nrf2 antioxidant pathway are reviewed. This review highlights the regulatory role of Nrf2 in the balance between oxidants and antioxidants as relevant mechanisms to male fertility. Nrf2 is involved in the regulation of spermatogenesis and sperm quality. Establishing a link between Nrf2 signaling pathways and the regulation of male fertility provides the basis for molecular modulation of inflammatory processes, reactive oxygen species generation, and the antioxidant molecular network, including the Nrf2-regulated antioxidant response, to improve male reproductive outcomes.

10.
Chin J Integr Med ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329655

RESUMO

Acute myocardial infarction (AMI), characterized by high incidence and mortality rates, poses a significant public health threat. Reperfusion therapy, though the preferred treatment for AMI, often exacerbates cardiac damage, leading to myocardial ischemia/reperfusion injury (MI/RI). Consequently, the development of strategies to reduce MI/RI is an urgent priority in cardiovascular therapy. Chinese medicine, recognized for its multi-component, multi-pathway, and multi-target capabilities, provides a novel approach for alleviating MI/RI. A key area of interest is the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. This pathway is instrumental in regulating inflammatory responses, oxidative stress, apoptosis, endoplasmic reticulum stress, and ferroptosis in MI/RI. This paper presents a comprehensive overview of the Nrf2/HO-1 signaling pathway's structure and its influence on MI/RI. Additionally, it reviews the latest research on leveraging Chinese medicine to modulate the Nrf2/HO-1 pathway in MI/RI treatment.

11.
J Alzheimers Dis Rep ; 8(1): 329-344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405353

RESUMO

Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder linked to the loss of dopaminergic neurons in the substantia nigra. Mitophagy, mitochondrial selective autophagy, is critical in maintaining mitochondrial and subsequently neuronal homeostasis. Its impairment is strongly implicated in PD and is associated with accelerated neurodegeneration. Objective: To study the positive effect of dimethyl fumarate (DMF) on mitophagy via the NRF2/BNIP3/PINK1 axis activation in PD disease models. Methods: The neuroprotective effect of DMF was explored in in vitro and in vivo PD models. MTT assay was performed to determine the DMF dose followed by JC-1 assay to study its mitoprotective effect in MPP+ exposed SHSY5Y cells. For the in vivo study, C57BL/6 mice were divided into six groups: Normal Control (NC), Disease Control (DC), Sham (Saline i.c.v.), Low Dose (MPP+ iodide+DMF 15 mg/kg), Mid Dose (MPP+ iodide+DMF 30 mg/kg), and High Dose (MPP+ iodide+DMF 60 mg/kg). The neuroprotective effect of DMF was assessed by performing rotarod, open field test, and pole test, and biochemical parameter analysis using immunofluorescence, western blot, and RT-PCR. Results: DMF treatment significantly alleviated the loss of TH positive dopaminergic neurons and enhanced mitophagy by increasing PINK1, Parkin, BNIP3, and LC3 levels in the MPP+ iodide-induced PD mice model. DMF treatment groups showed good locomotor activity and rearing time when compared to the DC group. Conclusions: DMF confers neuroprotection by activating the BNIP3/PINK1/Parkin pathway, enhancing the autophagosome formation via LC3, and improving mitophagy in PD models, and could be a potential therapeutic option in PD.

12.
J Orthop Surg Res ; 19(1): 23, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166985

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative disease involving articular cartilage, in which ferroptosis of chondrocytes plays an important role. Baicalin (BAI) exerts regulatory effects in a wide range of orthopedic diseases including OA, but its effect on ferroptosis of chondrocytes (CHs) is still unclear. The purpose of this study was to determine the effect of BAI on ferroptosis in human OA chondrocytes (OACs), and to explore its possible mechanism. METHODS: CHs were treated with IL-1ß (10 ng/mL) to simulate inflammation in vitro. Immunofluorescence, quantitative RT-PCR, Western blotting and cell viability assay were performed to evaluate the impacts of BAI on Fe2+ level, mitochondrial dysfunction, ferroptosis-related proteins, oxidative stress and cytotoxicity in CHs. Additionally, siRNA was made use of to knock out nuclear factor E2-related factor 2 (Nrf2) to analyze the role played by Nrf2 in BAI-induced CH ferroptosis. RESULTS: BAI eliminated IL-1ß-induced Fe2+ accumulation, changes in mitochondrial membrane potential and ferroptosis-related protein GPX4, SLC7A11, P53 and ACSL4 levels, as well as reactive oxygen species (ROS), lipid peroxidation (LPO) and malondialdehyde (MDA) accumulation in CHs. Besides, BAI reversed IL-1ß-induced decrease of Collagen II and increase of MMP13 in CHs. Meanwhile, BAI attenuated IL-1ß-induced CH toxicity and promoted Nrf2 antioxidant system activation. When Nrf2 was knocked down by siRNA, the effects of BAI on IL-1ß-induced ferroptosis-related proteins and antioxidant stress in CHs were significantly weakened. CONCLUSIONS: This study demonstrates that IL-1ß can induce CH ferroptosis. BAI is able to inhibit IL-1ß-induced CH ferroptosis and ECM degradation, and the specific mechanism may be that it can inhibit IL-1ß-induced CH ferroptosis by activating Nrf2 antioxidant system to attenuate the accumulation of intracellular ROS and lipid ROS.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Osteoartrite , Humanos , Antioxidantes/farmacologia , Condrócitos/metabolismo , Ferroptose/efeitos dos fármacos , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno , Transdução de Sinais
13.
Arch Toxicol ; 98(3): 579-615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265475

RESUMO

This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.


Assuntos
Ferroptose , Doenças Neurodegenerativas , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Antioxidantes/metabolismo
14.
Life Sci ; 336: 122346, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072188

RESUMO

AIMS: In daily life, it is common for humans to be exposed to multiple phthalate esters (PAEs). However, there is limited research on the mechanisms and intervention of combined PAEs toxicity. This study aims to explore the cytotoxicity of combined PAEs and evaluate the potential of Lycium barbarum polysaccharides (LBP) in mitigating the aforementioned toxicity. MAIN METHODS: LBP (62.5, 125 and 250 µg/mL) were applied to intervene HepG2 cells treated with DEHP and DBP mixtures (50, 100, 200, 400 and 800 µg/mL). Western Blot and different kits were mainly performed in our study. KEY FINDINGS: DEHP and DBP mixtures suppressed the expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and activated MAPK pathway by increasing ROS. Combined DEHP and DBP exposure reduced ATP content and inhibited the mitochondrial biogenesis pathway in HepG2 cells through oxidative stress, which in turn caused cytotoxicity. LBP reduced oxidative stress and cell death induced by mixed plasticizers, upregulated Nrf2 levels and mitochondrial biogenesis pathway levels and inhibited MAPK pathway activation. Notably, after treating HepG2 cells with Nrf2-specific inhibitor (ML385, 0.5 µM), we found that the activation of Nrf2 played a crucial role on LBP intervention of DEHP and DBP induced HepG2 cytotoxicity. SIGNIFICANCE: This study not only enhances our understanding of the toxicological effects caused by combined PAEs exposure, but also has significant implications in devising strategies to mitigate the toxicological consequences of combined exposure to exogenous chemicals through the investigation of the role of LBP.


Assuntos
Dietilexilftalato , Lycium , Humanos , Plastificantes/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Dietilexilftalato/toxicidade , Células Hep G2 , Estresse Oxidativo , Polissacarídeos/farmacologia
15.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119626, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37977492

RESUMO

Adipose tissue fibrosis has been identified as a novel contributor to the pathomechanism of obesity associated metabolic disorders. Sulforaphane (SFN) has been shown to have an anti-obesity effect. However, the impact of SFN on adipose tissue fibrosis is still not well understood. In this study, obese mice induced by high-fat diets (HFD) were used to examine the effects of SFN on adipose tissue fibrosis. According to the current findings, SFN dramatically enhanced glucose tolerance and decreased body weight in diet-induced-obesity (DIO) mice. Additionally, SFN therapy significantly reduced extracellular matrix (ECM) deposition and altered the expression of genes related to fibrosis. Furthermore, SFN also reduced inflammation and promoted macrophages polarization towards to M2 phenotype in adipose tissue, which protected adipose tissue from fibrosis. Notably, SFN-mediated nuclear factor E2-related factor 2 (Nrf2) activation was crucial in decreasing adipose tissue fibrosis. These results implied that SFN had favorable benefits in adipose tissue fibrosis, which consequently ameliorates obesity-related metabolic problems. Our research provides new treatment strategies for obesity and associated metabolic disorders.


Assuntos
Dieta Hiperlipídica , Isotiocianatos , Doenças Metabólicas , Sulfóxidos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo , Obesidade/tratamento farmacológico , Obesidade/patologia , Fibrose , Macrófagos , Doenças Metabólicas/patologia
16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-999165

RESUMO

ObjectiveTo explore the mechanism of Buzhong Yiqitang-containing serum in alleviating the cisplatin resistance in human non-small cell lung cancer (A549/DDP) cells via regulating the nuclear factor E2-related factor 2 (Nrf2)/reactive oxygen species (ROS) signaling pathway. MethodThe serum containing Buzhong Yiqitang was prepared and A549/DDP cells were cultured and randomly grouped: blank (10% blank serum), cisplatin (10% blank serum+20 mg·L-1 cisplatin), Buzhong Yiqitang (10% Buzhong Yiqitang-containing serum+20 mg·L-1 cisplatin), ML385 (10% blank serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), Buzhong Yiqitang+ML385 (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), tertiary butylhydroquinone (TBHQ) (10% blank serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin), and Buzhong Yiqitang+TBHQ (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin). The median inhibitory concentration (IC50) of cisplatin in each group was determined by the cell counting kit-8 (CCK-8) method and the resistance index (RI) was calculated. The apoptosis rate was detected by flow cytometry. The ROS content of each group was determined with the DCFH-DA fluorescence probe. Western blot was employed to determine the protein levels of Nrf2, cleaved cysteinyl aspartate-specific protease-3 (cleaved Caspase-3), cytochrome C (Cyt C), and B-cell lymphoma-2 (Bcl-2). ResultCompared with those in the cisplatin group, the IC50 and RI of A549/DDP cells to cisplatin in Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups decreased (P˂0.05). Compared with the blank group, the cisplatin, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups showed increased apoptosis rate of A549/DDP cells (P˂0.05). Compared with the blank group, cisplatin promoted the expression of Nrf2 (P˂0.05). Compared with the cisplatin group, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 inhibited the expression of Nrf2 (P<0.05), elevated the ROS level (P˂0.05), up-regulated the protein levels of cleaved Caspase-3 and Cyt C, and down-regulated the protein level of Bcl-2 (P<0.05), which were the most significant in the Buzhong Yiqitang+ML385 group. Compared with the cisplatin group, the TBHQ group showed increased IC50 and RI of cisplatin (P<0.05), decreased apoptosis rate of A549/DDP cells (P<0.05), up-regulated protein levels of Nrf2 and Bcl-2 (P<0.05), lowered level of ROS (P˂0.05), and down-regulated protein levels of cleaved Caspase-3 and Cyt C (P<0.05). Compared with the TBHQ group, Buzhong Yiqitang+TBHQ decreased the IC50 and RI of cisplatin in A549/DDP cells (P<0.05), increased the apoptosis rate (P<0.05), down-regulated the protein levels of Nrf2 and Bcl-2 (P<0.05), increased ROS (P˂0.05), and up-regulated the protein levels of cleaved Caspase-3 and Cyt C (P<0.05). ConclusionBuzhong Yiqitang induced apoptosis by inhibiting Nrf2/ROS pathway to alleviate cisplatin resistance in A549/DDP cells.

17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013359

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in memory and cognitive function. β-amyloid protein (Aβ) aggregation and excessive phosphorylation of Tau protein in the brain can increase oxidative stress levels, leading to energy metabolism imbalance, extensive apoptosis of nerve cells, and damage to synaptic function. The nuclear factor E2 related factor 2 (Nrf2) encoded by the Nfe212 gene is known as the "main regulatory factor" of antioxidant response. On the one hand, It can activate antioxidant response elements, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase1 (NQO1), increase the expression of antioxidant enzymes glutathione S-transfer (GST) and superoxide dismutase 1 (SOD1), and reduce the release of reactive oxygen species. On the other hand, it can inhibit immune inflammation, cell apoptosis, and activation of autophagy pathways and delay the progression of AD. Therefore, this article summarized, analyzed, and reviewed the relevant research on the regulation of the Nrf2 signaling pathway by traditional Chinese medicine in the prevention and treatment of AD in the past five years, including its structural characteristics, pathway conduction, mechanism of action in AD, and drug regulation. The results showed that among all reports, research on traditional Chinese medicine compounds occupied a high proportion and mostly focused on flavonoids, with the Nrf2/HO-1 and PI3K/Nrf2 signaling pathways being the most extensively studied. The mechanisms of action were mainly to inhibit oxidative stress, neuroinflammation, and cell apoptosis and improve synaptic function. This indicates that traditional Chinese medicine can regulate multiple Nrf2 signaling pathways and play a role in preventing and treating Alzheimer's disease from multiple mechanisms.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011451

RESUMO

ObjectiveTo investigate the effect and mechanism of Shenqi Tangluo pill (SQTLP) on oxidative stress injury of skeletal muscle of type 2 diabetes mellitus (T2DM) mice based on nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) pathway. MethodA total of 60 7-week-old male db/db mice [specific pathogen-free (SPF) grade] were selected and fed for one week for adaption. They were divided into the model control group, SQTLP low-, medium- and high-dose (19, 38, and 76 g·kg-1) groups and metformin group (0.26 g·kg-1) by gavage. Each group consisted of 12 mice. Twelve male db/m mice of the same age were selected as the blank group. The intervention was implemented continuously for 8 weeks. Fasting blood glucose (FBG) was detected. Fasting serum insulin (FINS) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment-insulin resistance (HOMA-IR) index and the homeostasis model assessment-insulin sensitivity index (HOMA-ISI) were calculated. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the contents of malondialdehyde (MDA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in skeletal muscle tissues were detected by biochemical kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in skeletal muscle tissues. The levels of reactive oxygen species (ROS) and 4-hydroxynonenal (4-HNE) in skeletal muscle tissue were detected by immunofluorescence (IF). The expression levels of Nrf2, HO-1, NQO1 and glutamate-cysteine ligase catalytic subunit (GCLC) proteins in skeletal muscle tissues were detected by Western blot. ResultCompared with those in the blank group, FBG, FINS and HOMA-IR in the model group were significantly increased (P<0.05), while HOMA-ISI was decreased (P<0.05). The results of OGTT and ITT showed that blood glucose was significantly increased at all time points (P<0.05), and glucose tolerance and insulin tolerance were significantly impaired. SOD and GSH-Px activities in skeletal muscle tissues were significantly decreased (P<0.05), and MDA and NADPH contents were significantly increased (P<0.05). In skeletal muscle tissues, the arrangement of muscle fibers was loose, the nucleus was disordered, and inflammatory cells were infiltrated. The expression levels of ROS and 4-HNE in skeletal muscle tissues were significantly increased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly decreased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the metformin group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that blood glucose in the metformin group was significantly decreased at all time points (P<0.05). The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue of the metformin group. The expressions of ROS and 4-HNE in skeletal muscle tissues were decreased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly increased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the SQTLP medium- and high-dose groups were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the glucose tolerance and insulin tolerance of mice were improved in each dose group of SQTLP. The GSH-Px activity in the SQTLP low-dose group was significantly increased (P<0.05), and the NADPH content was decreased (P<0.05). The activities of SOD and GSH-Px in the SQTLP medium- and high-dose groups were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). The skeletal muscle tissue injury of mice in each dose group of SQTLP was ameliorated to different degrees. In the SQTLP medium- and high-dose groups, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05). Compared with those in the SQTLP low-dose group, FBG and HOMA-IR in the SQTLP high-dose group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the SQTLP high-dose group significantly improved the glucose tolerance and insulin tolerance of mice. The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05) in the skeletal muscle tissue of the SQTLP high-dose group. ConclusionSQTLP can significantly improve IR in T2DM mice, and the mechanism is related to SQTLP activating the Nrf2/HO-1/NQO1 signaling pathway, promoting the expression of antioxidant enzymes, and thus improving the oxidative stress injury in the skeletal muscle.

19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011448

RESUMO

ObjectiveTo investigate the effects of Xinjia Congrong Tusizi decoction (XJCTD) on ovarian functions in the rat model of premature ovarian insufficiency (POI) and decipher the mechanism of regulating the tumor suppressor protein (p53)/nuclear factor E2-related factor 2 (Nrf2) pathway to attenuate granulosa cell ferroptosis. MethodForty-eight SPF-grade female SD rats were randomized into control, model, low-, medium-, and high-dose (1.1, 2.2, 4.4 g·kg-1) XJCTD, and Western medicine (coenzyme Q10, 0.002 7 g·kg-1) groups, with eight rats in each group. The rat model of POI was established by gavage of triptolide (TP), and after successful modeling, each group was administrated with the corresponding drugs by gavage for 14 d. The body weight and ovarian weight of each rat were weighed and the ovarian index was calculated. The morphology of the ovarian tissue was observed by hematoxylin-eosin staining, and the proportions of growing follicles and atretic follicles were calculated. The serum levels of anti-Müllerian hormone (AMM), estradiol (E2), and follicle-stimulating hormone (FSH) were measured by enzyme-linked immunosorbent assay (ELISA). The DCFH-DA fluorescent probe was used to measure the reactive oxygen species (ROS) content in granulosa cells. The content of cellular Ferrous ion (Fe2+), lipid peroxide (LPO), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) was detected by colorimetry. The expression of the tumor suppressor protein p53,Nrf2, solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) was determined by immunohistochemistry and Western blot. ResultCompared with the control group, the model group showed decreased ovarian weight, body weight, and ovarian index (P<0.01), reduced ovarian tissue volume and proportion of growing follicles (P<0.01), increased proportion of atretic follicles (P<0.01), lowered AMH and E2 levels and elevated FSH level in the serum (P<0.01), and elevated levels of Fe2+, ROS, LPO, and MDA (P<0.01) and lowered levels of GSH and SOD in granulosa cells (P<0.01). Moreover, the modeling up-regulated the expression of p53 (P<0.01) and down-regulated the expression of Nrf2, SLC7A11, and GPX4 (P<0.05, P<0.01) in the ovarian tissue. Compared with the model group, XJCTD increased the body weight, ovarian weight, and ovarian index (P<0.01), alleviated the pathological changes in the ovarian tissue, increased the proportion of growing follicles (P<0.01), decreased the proportion of atretic follicles (P<0.01), and reduced the content of ROS in granulosa cells (P<0.05, P<0.01). In addition, medium- and high-dose XJCTD lowered the FSH level (P<0.01) and raised E2 and AMH levels (P<0.01) in the serum, reduced the Fe2+ content (P<0.05, P<0.01), and increased the SOD content (P<0.01) in granulosa cells. High-dose XJCTD reduced the LPO and MDA content (P<0.01) and increased the SOD content (P<0.01) in the granulosa cells, down-regulated the expression of p53 (P<0.05), and up-regulated the expression of Nrf2, SLC7A11, and GPX4 in the ovarian tissue (P<0.05, P<0.01). ConclusionXJCTD may protect the ovarian function in the rat model of POI by regulating the p53/Nrf2 signaling pathway to attenuate the ferroptosis of ovarian granulosa cells.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1006550

RESUMO

ObjectiveTo observe the effect of Banxia Xiexintang (BXT) on the proliferation of human gastric cancer HGC-27, MKN-45, and AGS cells and its mechanism. MethodCell counting kit-8 (CCK-8) was used to detect the effects of different concentrations of BXT-containing serum (5%, 10%, and 20%) on the proliferation of HGC-27, MKN-45, and AGS cells. A mitochondrial membrane potential probe (TMRE) was used to detect the expression of mitochondrial membrane potential in cells. A kit was used to detect iron ion (Fe2+) content, lipid peroxide (LPO), and superoxide dismutase (SOD) activity. Western blot was used to detect the protein expression levels of glycogen synthase3β (GSK3β), phosphorylated GSK3β (p-GSK3β), nuclear factor E2 related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4). The real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of member 11 of the cystine/glutamic acid reverse transporter solute vector family 7 (SLC7A11), member 2 of the heavy chain solute vector family 3 (SLC3A2), transferrin receptor 3 (TFRC), and tumor protein (TP)53. ResultCCK-8 results showed that BXT and capecitabine could significantly reduce the survival rate of three kinds of gastric cancer cells after treatment with drug-containing serum for 24 h (P<0.01). After 48 h of intervention with drug-containing serum, the survival rate of three kinds of gastric cancer cells was significantly decreased in both the capecitabine group and the BXT group compared with the blank group. The BXT group was dose-dependent, with 20% BXT having the most significant effect (P<0.01). In terms of biochemical indicators of ferroptosis, compared with the blank group, BXT and capecitabine significantly decreased the expression of mitochondrial membrane potential (P<0.01) and SOD activity (P<0.01) and significantly increased the contents of LPO and Fe2+ (P<0.01), so as to improve the sensitivity of gastric cancer cells to ferroptosis. In terms of the Nrf2/GPX4 pathway, compared with the blank group, the BXT group could reduce the protein expressions of p-GSK3β, Nrf2, and GPX4 (P<0.01) in gastric cancer cells and increase mRNA expressions of SLC7A11 and SLC3A2 (P<0.05). It could also increase the protein expression of GSK3β (P<0.01) and mRNA expression of TP53 and TFRC (P<0.05, P<0.01) in gastric cancer cells. Inhibition of the Nrf2/GPX4 pathway induces ferroptosis in gastric cancer cells. Compared with the capecitabine group, the 20% BXT group showed a more obvious effect. ConclusionBanxia Xiexintang can induce ferroptosis in gastric cancer cells HGC-27, MKN-45, and AGS by inhibiting the Nrf2/GPX4 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...