Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
J Gene Med ; 26(6): e3708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837511

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Assuntos
Movimento Celular , Proliferação de Células , Quimiocina CCL2 , Células Epiteliais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Lisofosfolipídeos , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Progressão da Doença , Transdução de Sinais/efeitos dos fármacos , Esôfago/metabolismo , Esôfago/patologia , Esôfago/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos
2.
Cureus ; 16(3): e56025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38606261

RESUMO

Ivermectin was first discovered in the 1970s by Japanese microbiologist Satoshi Omura and Irish parasitologist William C. Campbell. Ivermectin has become a versatile pharmaceutical over the past 50 years. Ivermectin is a derivative of avermectin originally used to treat parasitic infections. Emerging literature has suggested that its role goes beyond this and may help treat inflammatory conditions, viral infections, and cancers. Ivermectin's anti-parasitic, anti-inflammatory, anti-viral, and anticancer effects were explored. Its traditional mechanism of action in parasitic diseases, such as scabies and malaria, rests on its ability to interfere with the glutamate-gated chloride channels in invertebrates and the lack of P-glycoprotein in many parasites. More recently, it has been discovered that the ability of ivermectin to block the nuclear factor kappa-light-chain enhancer of the activated B (NF-κB) pathway that modulates the expression and production of proinflammatory cytokines is implicated in its role as an anti-inflammatory agent to treat rosacea. Ivermectin has also been evaluated for treating infections caused by viruses, such as SARS-CoV-2 and adenoviruses, through inhibition of viral protein transportation and acting on the importin α/ß1 interface. It has also been suggested that ivermectin can inhibit the proliferation of tumorigenic cells through various pathways that lead to the management of certain cancers. The review aimed to evaluate its multifaceted effects and potential clinical applications beyond its traditional use as an anthelmintic agent.

3.
Microbiol Spectr ; 12(2): e0371723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179919

RESUMO

All life forms have evolved to respond appropriately to various environmental and internal cues. In the animal kingdom, the prototypical regulator class of such cellular responses is the Rel homology domain proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Fungi, the close relatives of animals, have also evolved with their own NF-κB-like regulators called velvet family proteins to govern cellular and chemical development. Here, we conducted a detailed investigation of the taxonomic broad presence of velvet proteins. We observed that velvet proteins are widely distributed in the fungal kingdom. Moreover, we have identified and characterized 21 major velvet clades in fungi. We have further revealed that the highly conserved velvet domain is composed of three distinct motifs and acts as an evolutionarily independent domain, which can be shuffled with various functional domains. Such rearrangements of the velvet domain have resulted in the functional and type diversity of the present velvet regulators. Importantly, our in-deep analyses of the primary and 3D structures of the various velvet domains showed that the fungal velvet domains can be divided into two major clans: the VelB and the VosA clans. The 3D structure comparisons revealed a close similarity of the velvet domain with many other eukaryotic DNA-binding proteins, including those of the Rel, Runt, and signal transducer and activator of transcription families, sharing a common ß-sandwich fold. Altogether, this study improves our understanding of velvet regulators in the fungal kingdom.IMPORTANCEFungi are the relatives of animals in Opisthokonta and closely associated with human life by interactive ways such as pathogenicity, food, and secondary metabolites including beneficial ones like penicillin and harmful ones like the carcinogenic aflatoxins. Similar to animals, fungi have also evolved with NF-κB-like velvet family regulators. The velvet proteins constitute a large protein family of fungal transcription factors sharing a common velvet domain and play a key role in coordinating fungal secondary metabolism, developmental and differentiation processes. Our current understanding on velvet regulators is mostly from Ascomycota fungi; however, they remain largely unknown outside Ascomycota. Therefore, this study performed a taxonomic broad investigation of velvet proteins across the fungal kingdom and conducted a detailed analysis on velvet distribution, structure, diversity, and evolution. The results provide a holistic view of velvet regulatory system in the fungal kingdom.


Assuntos
Proteínas Fúngicas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas Fúngicas/genética , Filogenia , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
4.
J Thorac Dis ; 15(11): 6094-6105, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38090309

RESUMO

Background: In recent years, particulate matter 2.5 (PM2.5) exposure has been considered a key dangerous factor in chronic obstructive pulmonary disease (COPD). The dysfunction of airway smooth muscle cells (ASMCs) facilitates lung inflammation and fibrosis in COPD. Therefore, we explored whether PM2.5 could promote the inflammatory response and fibrosis in ASMCs in vivo and in vitro via the wingless-related integration site 5a (Wnt5a)/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Methods: Wnt5a expression in the bronchoalveolar lavage fluid (BALF) of COPD patients exposed to PM2.5 was measured by enzyme-linked immunosorbent assay (ELISA). Mice were intratracheally injected with PM2.5 and a Wnt5a antagonist (BOX5). ASMCs were transfected with Wnt5a small interfering RNA (siRNA), BOX5 and the JNK inhibitor SP600125 before PM2.5 stimulation. Hematoxylin and eosin (H&E) staining was performed to measure the inflammatory response and airway fibrosis. The production of Wnt5a/JNK/NF-KB pathway factors was analyzed by Western blotting. The secretion of interleukin-6 (IL-6), IL-8 and tumor necrosis factor-α (TNF-α) was measured by ELISA. The expression levels of alpha smooth muscle actin (α-SMA), collagen I and collagen III were assessed by quantitative real time polymerase chain reaction (qRT-PCR) and Western blotting. Results: We found that the increase in Wnt5a expression in the BALF of COPD patients was positively correlated with the levels of PM2.5 exposure. The Wnt5a/JNK/NF-κB pathway was activated in the lung samples of PM2.5-induced model mice and PM2.5-exposed ASMCs, which promoted the production of α-SMA, collagen I and collagen III and increased the secretion of IL-6, IL-8 and TNF-α. Furthermore, our results showed that BOX5 could prevent these effects. Wnt5a siRNA blocked the activation of the Wnt5a/JNK/NF-κB pathway and inhibited the effects of PM2.5 on fibrosis and inflammation in ASMCs. SP600125 blocked the phosphorylation of NF-κB and inhibited inflammation and fibrosis in PM2.5-exposed ASMCs. Conclusions: These findings suggest that PM2.5 stimulation of ASMCs induces pulmonary inflammatory factor expression and collagen deposition during COPD via the Wnt5a/JNK pathway, which indicates that modulating the Wnt5a/JNK pathway could be a promising therapeutic strategy for PM2.5-induced COPD.

5.
Biomed Pharmacother ; 169: 115822, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37944440

RESUMO

Pulmonary fibrosis is highly lethal with limited treatments. Butaselen (BS) is an inhibitor of thioredoxin reductase (TrxR)/thioredoxin (Trx) with anti-tumor activity. However, its impact on pulmonary fibrosis and the involved mechanisms remain unclear. Here, we demonstrate that BS is a potential drug for the treatment of pulmonary fibrosis. Specifically, BS can inhibit pulmonary fibrosis both in vitro and in vivo, with comparable efficacy and enhanced safety when compared with pirfenidone. BS and dexamethasone display a synergistic effect in inhibiting pulmonary fibrosis both in vitro and in vivo. Mechanistic studies reveal that BS can inhibit the TrxR activity during pulmonary fibrosis. RNA-sequencing analysis identifies that genes of ECM-related signaling pathways are notably affected by BS. BS can not only inhibit the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and reduce pulmonary fibrosis-related inflammation, but also reduce NF-κB-activated transcriptional expression of transforming growth factor-ß1 (TGF-ß1), which leads to the inactivation of Smad2/Smad3 and decrease of collagen formation and fibrosis. Moreover, the knockdown of Trx1 with siRNA can also inhibit NF-κB/TGF-ß1/Smads signaling. In conclusion, the TrxR/Trx inhibitor butaselen can suppress pulmonary fibrosis by inhibiting NF-κB/TGF-ß1/Smads signaling.


Assuntos
NF-kappa B , Fibrose Pulmonar , Humanos , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tiorredoxina Dissulfeto Redutase , Fibrose Pulmonar/tratamento farmacológico , Fibrose , Tiorredoxinas
6.
J Med Life ; 16(7): 1105-1110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900069

RESUMO

Sepsis, a life-threatening condition arising from infection, often results in multi-organ failure, including cardiac dysfunction. This study investigated Xanthohumol, a natural compound, and its potential mechanism of action to enhance heart function following sepsis. A total of twenty-four adult male Swiss albino mice were allocated randomly to one of four equal groups (n=6): sham, CLP, vehicle Xanthohumol the same amount of DMSO injected IP 10 minutes before the CLP, and Xanthohumol group (0.4 mg/kg of Xanthohumol administered IP before the CLP process). Toll-like receptor 4, pro-inflammatory mediators, anti-inflammatory markers, oxidative stress indicators, apoptosis markers, and serum cardiac damage biomarkers were measured in the cardiac tissue using ELISA. Data with normal distribution were analyzed using t-test and ANOVA tests (p<0.05). In comparison to the sham group, the sepsis group had significantly higher levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB, while the pre-treated group with Xanthohumol had significantly lower levels (p<0.05) of these markers than the sepsis group. Bcl-2 showed no significant difference in Xanthohumol pre-treated group relative to the sepsis group, while IL-10 was significantly elevated. Xanthohumol dramatically reduced cardiac tissue injury (p<0.05) relative to the CLP group. By blocking the downstream signal transduction pathways of TLR-4 and NF-kB, Xanthohumol was shown to lessen cardiac damage in male mice during CLP-induced polymicrobial sepsis.


Assuntos
Sepse , Receptor 4 Toll-Like , Camundongos , Masculino , Animais , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico
7.
J Med Life ; 16(7): 1120-1126, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900081

RESUMO

As sepsis is associated with a 50% increase in mortality, sepsis-induced cardiomyopathy has become a critical topic. A multidisciplinary approach is required for the diagnosis and treatment of septic cardiomyopathy. This study looked at Sulforaphane, a natural product that aims to evaluate cardiac function after sepsis, and its likely mechanism of action. Twenty-four adult male Swiss albino mice were randomly divided into 4 equal groups (n=6): sham, CLP, vehicle Sulforaphane (the same amount of DMSO injected IP one hour before the CLP), and Sulforaphane group (one hour before the CLP, a 5mg/kg dose of Sulforaphane was injected). Cardiac tissue levels of toll-like receptor 4 (TLR-4), pro-inflammatory mediators, anti-inflammatory markers, oxidative stress markers, apoptosis markers, and serum cardiac damage biomarkers were assessed using ELISA. Statistical analyses, including t-tests and ANOVA tests, were performed with a significance level of 0.05 for normally distributed data. Compared to the sham group, the sepsis group had significantly elevated levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB (p<0.05). In contrast, the Sulforaphane pre-treated group demonstrated significantly lower levels of these markers (p<0.05). Additionally, Bcl-2 levels were significantly reduced (p<0.05) in the Sulforaphane group. Sulforaphane administration also significantly attenuated cardiac tissue injury (p<0.05). The findings suggest that Sulforaphane can decrease heart damage in male mice during CLP-induced polymicrobial sepsis by suppressing TLR-4/NF-kB downstream signal transduction pathways.


Assuntos
Cardiomiopatias , Traumatismos Cardíacos , Sepse , Camundongos , Masculino , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Cardiomiopatias/etiologia , Cardiomiopatias/complicações , Traumatismos Cardíacos/complicações , Sepse/complicações , Sepse/tratamento farmacológico
8.
Curr Issues Mol Biol ; 45(9): 7653-7667, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37754267

RESUMO

A study was conducted to investigate the effects of different doses of 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ) on motor coordination scores, brain tissue morphology, the expression of tyrosine hydroxylase, the severity of oxidative stress parameters, the levels of the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) factor, and the inflammatory response in rats during the development of rotenone-induced Parkinsonism. The findings indicate that HTHQ, with its antioxidant attributes, reduced the levels of 8-isoprostane, lipid oxidation products, and protein oxidation products. The decrease in oxidative stress due to HTHQ led to a reduction in the mRNA content of proinflammatory cytokines and myeloperoxidase activity, accompanying the drop in the expression of the factor NF-κB. These alterations promoted an improvement in motor coordination scores and increased tyrosine hydroxylase levels, whereas histopathological changes in the brain tissue of the experimental animals were attenuated. HTHQ exhibited greater effectiveness than the comparative drug rasagiline based on the majority of variables.

9.
Biomolecules ; 13(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37627293

RESUMO

The perception of sepsis has shifted over time; however, it remains a leading cause of death worldwide. Sepsis is now recognized as an imbalance in host cellular functions triggered by the invading pathogens, both related to immune cells, endothelial function, glucose and oxygen metabolism, tissue repair and restoration. Many of these key mechanisms in sepsis are also targets of hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been shown to improve survival in clinical studies on patients with necrotizing soft tissue infections as well as experimental sepsis models. High tissue oxygen tension during HBO2 treatment may affect oxidative phosphorylation in mitochondria. Oxygen is converted to energy, and, as a natural byproduct, reactive oxygen species are produced. Reactive oxygen species can act as mediators, and both these and the HBO2-mediated increase in oxygen supply have the potential to influence the cellular processes involved in sepsis. The pathophysiology of sepsis can be explained comprehensively through resistance and tolerance to infection. We argue that HBO2 treatment may protect the host from collateral tissue damage during resistance by reducing neutrophil extracellular traps, inhibiting neutrophil adhesion to vascular endothelium, reducing proinflammatory cytokines, and halting the Warburg effect, while also assisting the host in tolerance to infection by reducing iron-mediated injury and upregulating anti-inflammatory measures. Finally, we show how inflammation and oxygen-sensing pathways are connected on the cellular level in a self-reinforcing and detrimental manner in inflammatory conditions, and with support from a substantial body of studies from the literature, we conclude by demonstrating that HBO2 treatment can intervene to maintain homeostasis.


Assuntos
Oxigenoterapia Hiperbárica , Sepse , Humanos , Espécies Reativas de Oxigênio , Oxigênio , Homeostase , Sepse/terapia
10.
Heliyon ; 9(2): e13777, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36852060

RESUMO

Activated microglia are divided into pro-inflammatory and anti-inflammatory functional states. In anti-inflammatory state, activated microglia contribute to phagocytosis, neural repair and anti-inflammation. Nrf2 as a major endogenous regulator in hematoma clearance after intracerebral hemorrhage (ICH) has received much attention. This study aims to investigate the mechanism underlying Nrf2-mediated regulation of microglial phenotype and phagocytosis in hematoma clearance after ICH. In vitro experiments, BV-2 cells were assigned to normal group and administration group (Nrf2-siRNA, Nrf2 agonists Monascin and Xuezhikang). In vivo experiments, mice were divided into 5 groups: sham, ICH + vehicle, ICH + Nrf2-/-, ICH + Monascin and ICH + Xuezhikang. In vitro and in vivo, 72 h after administration of Monascin and Xuezhikang, the expression of Nrf2, inflammatory-associated factors such as Trem1, TNF-α and CD80, anti-inflammatory, neural repair and phagocytic associated factors such as Trem2, CD206 and BDNF were analyzed by the Western blot method. In vitro, fluorescent latex beads or erythrocytes were uptaken by BV-2 cells in order to study microglial phagocytic ability. In vivo, hemoglobin levels reflect the hematoma volume. In this study, Nrf2 agonists (Monascin and Xuezhikang) upregulated the expression of Trem2, CD206 and BDNF while decreased the expression of Trem1, TNF-α and CD80 both in vivo and in vitro. At the same time, after Monascin and Xuezhikang treatment, the phagocytic capacity of microglia increased in vitro, neurological deficits improved and hematoma volume lessened in vivo. These results were reversed in the Nrf2-siRNA or the Nrf2-/- mice. All these results indicated that Nrf2 enhanced hematoma clearance and neural repair, improved neurological outcomes through enhancing microglial phagocytosis and alleviating neuroinflammation.

11.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615638

RESUMO

Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.


Assuntos
Antineoplásicos , Neoplasias , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo
12.
Comput Struct Biotechnol J ; 21: 688-701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36659928

RESUMO

The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic ß loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies.

13.
Bioact Mater ; 22: 404-422, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36311047

RESUMO

Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of 'osteoimmune-smart' biomaterials in the bone regeneration field.

14.
J Med Life ; 16(11): 1639-1645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38406775

RESUMO

Sepsis, often resulting from an immune response overreaction to microorganisms and their products, can lead to acute lung injury through inflammation mediated by excessive cytokines. This study aimed to investigate the effects of regorafenib on lung injury in mice following the induction of sepsis. We divided mice into four groups (n=6 each): a sham group (undergoing laparotomy without cecal ligation and puncture [CLP]), a CLP group, a vehicle group, and a regorafenib-treated group (30 mg/kg IP, administered one hour before CLP). TNF-α, IL-1ß, VEGF, MPO, caspase-11, and Ang-2 levels were significantly increased (p<0.05) in the CLP group compared to the sham group, while the regorafenib group showed significant reductions in these markers versus the CLP group (p< 0.05). In contrast, Ang-1 levels, which were reduced in the CLP group (p<0.05) compared to the sham group, were elevated in the regorafenib group compared to the CLP group. Quantitative real-time PCR revealed a significant decrease in TIE2 and VE-cadherin mRNA expression in the lung tissue of the CLP group compared to the sham group. There were no significant differences in mRNA expression of the TIE2 gene between the regorafenib and CLP group. However, VE-cadherin significantly increased after regorafenib treatment. Regorafenib demonstrated lung-protective effects through its anti-inflammatory and antiangiogenic activities and its influence on lung tissue mRNA expression of the cadherin gene.


Assuntos
Lesão Pulmonar Aguda , Compostos de Fenilureia , Piridinas , Sepse , Camundongos , Animais , Angiopoietinas , Pulmão , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Sepse/complicações , Sepse/tratamento farmacológico , RNA Mensageiro , Fator de Necrose Tumoral alfa
15.
Antioxidants (Basel) ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275645

RESUMO

UVB significantly impacts the occurrence of cutaneous disorders, ranging from inflammatory to neoplastic diseases. Polyphenols derived from plants have been found to exhibit photoprotective effects against various factors that contribute to skin cancer. During the fermentation of the polyphenol-enriched blueberry preparation (PEBP), small oligomers of polyphenols were released, thus enhancing their photoprotective effects. This study aimed to investigate the protective effects of PEBP on UVB-induced skin inflammation. Topical preparations of polyphenols were applied to the skin of dorsally shaved mice. Mice were subsequently exposed to UVB and were sacrificed 90 min after UVB exposure. This study revealed that pretreatment with PEBP significantly inhibited UVB-induced recruitment of mast and neutrophil cells and prevented the loss of skin thickness. Furthermore, the findings show that PEBP treatment resulted in the downregulation of miR-210, 146a, and 155 and the upregulation of miR-200c and miR-205 compared to the UVB-irradiated mice. Additionally, PEBP was found to reduce the expression of IL-6, IL-1ß, and TNFα, inhibiting COX-2 and increasing IL-10 after UVB exposure. Moreover, DNA methylation analysis indicated that PEBP might potentially reduce the activation of inflammation-related pathways such as MAPK, Wnt, Notch, and PI3K-AKT signaling. Our finding suggests that topical application of PEBP treatment may effectively prevent UVB-induced skin damage by inhibiting inflammation.

17.
Int J Pharm X ; 4: 100126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36147518

RESUMO

Chemoresistance and hence the consequent treatment failure is considerably challenging in clinical cancer therapeutics. The understanding of the genetic variations in chemoresistance acquisition encouraged the use of gene modulatory approaches to restore anti-cancer drug efficacy. Many smart nanoparticles are designed and optimized to mediate combinational therapy between nucleic acid and anti-cancer drugs. This review aims to define a rational design of such co-loaded nanocarriers with the aim of chemoresistance reversal at various cellular levels to improve the therapeutic outcome of anticancer treatment. Going through the principles of therapeutics loading, physicochemical characteristics tuning, and different nanocarrier modifications, also looking at combination effectiveness on chemosensitivity restoration. Up to now, these emerging nanocarriers are in development status but are expected to introduce outstanding outcomes.

18.
J Tradit Complement Med ; 12(5): 455-465, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36081816

RESUMO

Background: The immune system functions to protect the host from a broad array of infectious diseases. Here, we evaluated the in vitro immunomodulatory effects of green coffee extract (GCE), and conducted a double-blinded, randomized and placebo-controlled trial among apparently healthy individuals. Methods: We determined the levels and functions of inflammatory and immune markers viz., phospho-NF-κB p65 ser536, chemotaxis, phagocytosis, TH1/TH2 cytokines and IgG production. We also evaluated several immunological markers such as total leukocyte counts, differential leukocyte counts, NK cell activity, CD4/CD8 ratio, serum immunoglobulin, C-reactive protein (CRP) and pro-inflammatory cytokines (IL-6 and TNF-α). Results and conclusion: GCE significantly inhibited LPS-induced NF-κB p65 ser536 phosphorylation, MCP-1-induced chemotaxis and significantly enhanced phagocytosis and IgG production. In addition, GCE modulated PMA/PHA-induced TH1/TH2 cytokine production. Clinical investigations suggested that the expression of CD56 and CD16 was markedly augmented on NK cells following GCE treatment. GCE significantly enhanced IgA production before and after influenza vaccination. Similarly, IL-6, TNF-α and CRP levels were significantly inhibited by GCE. Together, GCE confers several salubrious immunomodulatory effects at different levels attributing to optimal functioning of immune responses in the host. Taxonomy: Cell biology, Clinical study, Clinical Trial.

19.
Cancers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36011046

RESUMO

Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein-Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/ß-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.

20.
Front Cell Infect Microbiol ; 12: 944819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034693

RESUMO

Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.


Assuntos
Leishmania guyanensis , Leishmania , Óxido Nítrico Sintase Tipo II , Animais , Citocinas , Humanos , Interleucina-17 , Leishmania guyanensis/virologia , Leishmaniavirus , Camundongos , NF-kappa B , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Receptor 3 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...