Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062780

RESUMO

The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have an abnormally hard outer shell (low M disorder, i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far has been found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2, especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 and later in Omicron, is associated with attenuation according to the Shell-Disorder Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.


Assuntos
COVID-19 , Pangolins , SARS-CoV-2 , SARS-CoV-2/patogenicidade , Animais , COVID-19/virologia , COVID-19/transmissão , Pangolins/virologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Biologia Computacional/métodos , Fosfoproteínas
2.
Methods Mol Biol ; 2826: 117-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017889

RESUMO

Memory B cells are central to the establishment of immunological memory, providing long-term protection against specific pathogens and playing a vital role in the efficacy of vaccines. Understanding how memory B cell formation is disrupted during persistent infection is essential for new therapeutics. Lymphocytic choriomeningitis virus (LCMV) is an ideal model for investigating memory B cells in acute versus chronic infection. This protocol details techniques to isolate, enrich, and examine LCMV-specific memory B cells in both acute and chronic LCMV infection. Using an antigen tetramer enrichment system and flow cytometry, this method assesses low-frequency, polyclonal antigen-specific memory B cells.


Assuntos
Antígenos Virais , Citometria de Fluxo , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Camundongos , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Citometria de Fluxo/métodos , Antígenos Virais/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo , Memória Imunológica , Linfócitos B/imunologia , Linfócitos B/metabolismo
3.
Methods Mol Biol ; 2824: 259-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039418

RESUMO

In negative strand RNA viruses, ribonucleoproteins, not naked RNA, constitute the template used by the large protein endowed with polymerase activity for replicating and transcribing the viral genome. Here we give an overview of the structures and functions of the ribonucleoprotein from phleboviruses. The nucleocapsid monomer, which constitutes the basic structural unit, possesses a flexible arm allowing for a conformational switch between a closed monomeric state and the formation of a polymeric filamentous structure competent for viral RNA binding and encapsidation in the open state of N. The modes of N-N oligomerization as well as interactions with vRNA are described. Finally, recent advances in tomography open exciting perspectives for a more complete understanding of N-L interactions and the design of specific antiviral compounds.


Assuntos
Phlebovirus , RNA Viral , Ribonucleoproteínas , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , RNA Viral/metabolismo , RNA Viral/genética , Phlebovirus/metabolismo , Phlebovirus/genética , Humanos , Modelos Moleculares , Nucleocapsídeo/metabolismo , Nucleocapsídeo/química , Multimerização Proteica , Conformação Proteica , Genoma Viral
4.
Methods Mol Biol ; 2824: 281-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039419

RESUMO

Rift Valley fever virus (RVFV; genus Phlebovirus, family Phenuiviridae, order Bunyavirales) is a mosquito-borne zoonotic pathogen endemic in Africa. Its negative-stranded genomic RNA (vRNA) is divided into three segments termed L, M, and S. Both vRNAs and antigenomic cRNAs are encapsidated by viral nucleoprotein (N) to form nucleocapsids, which constitute the template for genome transcription and replication. Based on a number of electron microscopy and structural studies, the viral RNAs of negative-strand RNA viruses, including phleboviruses, are commonly considered to be entirely and uniformly covered by N protein. However, high resolution data supporting this notion was missing to date.Here, we describe a method how to globally map all N-RNA interactions of RVFV by using iCLIP (individual-nucleotide resolution UV cross-linking and immunoprecipitation). The protocol is based on covalent cross-linking of direct protein-RNA interactions by UV irradiation. Following sample lysis, a selective isolation of N in complex with its RNA targets is achieved by immunoprecipitation. Then, N-RNA complexes are separated by SDS-PAGE, and after membrane transfer, RNA is isolated and subjected to library preparation and high-throughput sequencing. We explain how the standard iCLIP protocol can be adapted to RVFV N-RNA interaction studies. The protocol describes mapping of all N interactions with the vRNAs and cRNAs derived either from RVFV particles or from infected cells.


Assuntos
Genoma Viral , Nucleoproteínas , RNA Viral , Vírus da Febre do Vale do Rift , Vírus da Febre do Vale do Rift/genética , RNA Viral/genética , RNA Viral/metabolismo , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Mapeamento de Nucleotídeos/métodos , Imunoprecipitação/métodos , Humanos , Febre do Vale de Rift/virologia , Febre do Vale de Rift/metabolismo , Animais
5.
Heliyon ; 10(12): e33049, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021953

RESUMO

Seasonal influenza affects millions of lives worldwide, with the influenza A virus (IAV) responsible for pandemics and annual epidemics, causing the most severe illnesses resulting in patient hospitalizations or death. With IAV threatening the next global influenza pandemic, it is a race against time to search for antiviral drugs. Betacyanins are unique nitrogen-containing and water-soluble reddish-violet pigments that have been reported to possess antiviral properties against the dengue virus. This study aimed to examine the antiviral effect of betacyanins from red pitahaya (Hylocereus polyrhizus) on IAV-infected lung epithelial A549 cells. HPLC and LC-MS analysis of extracted betacyanin showed four betacyanins in the betacyanin fraction: phyllocactin, hylocerenin, betanin, and isobetanin. Cytotoxicity assay showed that betacyanin fractions were not cytotoxic to A549 cells at concentrations below 100 µg/mL. Betacyanin fraction concentrations of 12.5, 25.0, and 50.0 µg/mL prevented the formation of viral cytopathic effect and reduced virus titer in IAV-infected cells up to 72 h. A downregulation of protein and mRNA nucleoprotein expression levels was observed after treatment with 25.0 and 50.0 µg/mL of betacyanin fraction after 24 h, thereby providing evidence for the antiviral activity of betacyanin from red pitahaya against IAV in vitro.

6.
Front Immunol ; 15: 1419165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911852

RESUMO

Complement activation is considered to contribute to the pathogenesis of severe SARS-CoV-2 infection, mainly by generating potent immune effector mechanisms including a strong inflammatory response. Involvement of the lectin complement pathway, a major actor of the innate immune anti-viral defense, has been reported previously. It is initiated by recognition of the viral surface Spike glycoprotein by mannose-binding lectin (MBL), which induces activation of the MBL-associated protease MASP-2 and triggers the proteolytic complement cascade. A role for the viral nucleoprotein (N) has also been reported, through binding to MASP-2, leading to protease overactivation and potentiation of the lectin pathway. In the present study, we reinvestigated the interactions of the SARS-CoV-2 N protein, produced either in bacteria or secreted by mammalian cells, with full-length MASP-2 or its catalytic domain, in either active or proenzyme form. We could not confirm the interaction of the N protein with the catalytic domain of MASP-2 but observed N protein binding to proenzyme MASP-2. We did not find a role of the N protein in MBL-mediated activation of the lectin pathway. Finally, we showed that incubation of the N protein with MASP-2 results in proteolysis of the viral protein, an observation that requires further investigation to understand a potential functional significance in infected patients.


Assuntos
COVID-19 , Lectina de Ligação a Manose da Via do Complemento , Serina Proteases Associadas a Proteína de Ligação a Manose , SARS-CoV-2 , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Humanos , SARS-CoV-2/imunologia , Lectina de Ligação a Manose da Via do Complemento/imunologia , COVID-19/imunologia , COVID-19/virologia , Ligação Proteica , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Ativação do Complemento/imunologia , Lectina de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/imunologia , Fosfoproteínas
7.
Structure ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38749445

RESUMO

Orthomyxoviruses, such as influenza and thogotoviruses, are important human and animal pathogens. Their segmented viral RNA genomes are wrapped by viral nucleoproteins (NPs) into helical ribonucleoprotein complexes (RNPs). NP structures of several influenza viruses have been reported. However, there are still contradictory models of how orthomyxovirus RNPs are assembled. Here, we characterize the crystal structure of Thogoto virus (THOV) NP and found striking similarities to structures of influenza viral NPs, including a two-lobed domain architecture, a positively charged RNA-binding cleft, and a tail loop important for trimerization and viral transcription. A low-resolution cryo-electron tomography reconstruction of THOV RNPs elucidates a left-handed double helical assembly. By providing a model for RNP assembly of THOV, our study suggests conserved NP assembly and RNA encapsidation modes for thogoto- and influenza viruses.

8.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791202

RESUMO

Knowledge of the composition of proteins that interact with plasma DNA will provide a better understanding of the homeostasis of circulating nucleic acids and the various modes of interaction with target cells, which may be useful in the development of gene targeted therapy approaches. The goal of the present study is to shed light on the composition and architecture of histone-containing nucleoprotein complexes (NPCs) from the blood plasma of healthy females (HFs) and breast cancer patients (BCPs) and to explore the relationship of proteins with crucial steps of tumor progression: epithelial-mesenchymal transition (EMT), cell proliferation, invasion, cell migration, stimulation of angiogenesis, and immune response. MALDI-TOF mass spectrometric analysis of NPCs isolated from blood samples using affine chromatography was performed. Bioinformatics analysis showed that the shares of DNA-binding proteins in the compositions of NPCs in normal and cancer patients are comparable and amount to 40% and 33%, respectively; in total, we identified 38 types of DNA-binding motifs. Functional enrichment analysis using FunRich 3.13 showed that, in BCP blood, the share of DNA-binding proteins involved in nucleic acid metabolism increased, while the proportion of proteins involved in intercellular communication and signal transduction decreased. The representation of NPC passenger proteins in breast cancer also changes: the proportion of proteins involved in transport increases and the share of proteins involved in energy biological pathways decreases. Moreover, in the HF blood, proteins involved in the processes of apoptosis were more represented in the composition of NPCs and in the BCP blood-in the processes of active secretion. For the first time, bioinformatics approaches were used to visualize the architecture of circulating NPCs in the blood and to show that breast cancer has an increased representation of passenger proteins involved in EMT, cell proliferation, invasion, cell migration, and immune response. Using breast cancer protein data from the Human Protein Atlas (HPA) and DEPC, we found that 86% of NPC proteins in the blood of BCPs were not previously annotated in these databases. The obtained data may indirectly indicate directed protein sorting in NPCs, which, along with extracellular vesicles, can not only be diagnostically significant molecules for liquid biopsy, but can also carry out the directed transfer of genetic material from donor cells to recipient cells.


Assuntos
Neoplasias da Mama , Proteínas de Ligação a DNA , Humanos , Feminino , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Carcinogênese/metabolismo , Proliferação de Células , DNA/metabolismo , DNA/sangue , Biologia Computacional/métodos , Nucleoproteínas/metabolismo , Nucleoproteínas/sangue , Movimento Celular
9.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38714444

RESUMO

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Assuntos
Adenoviridae , Administração Intranasal , Anticorpos Antivirais , Proteção Cruzada , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Proteínas da Matriz Viral , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Adenoviridae/genética , Adenoviridae/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Camundongos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Eficácia de Vacinas , Nucleoproteínas/imunologia , Nucleoproteínas/genética , Proteínas do Core Viral/imunologia , Proteínas do Core Viral/genética , Injeções Intramusculares , Proteínas Viroporinas
10.
Methods Mol Biol ; 2808: 9-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743359

RESUMO

Protein-fragment complementation assays (PCAs) are powerful tools to investigate protein-protein interactions in a cellular context. These are especially useful to study unstable proteins and weak interactions that may not resist protein isolation or purification. The PCA based on the reconstitution of the Gaussia princeps luciferase (split-luc) is a sensitive approach allowing the mapping of protein-protein interactions and the semiquantitative measurement of binding affinity. Here, we describe the split-luc protocol we used to map the viral interactome of measles virus polymerase complex.


Assuntos
Vírus do Sarampo , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Humanos , Luciferases/metabolismo , Luciferases/genética , Proteínas Virais/metabolismo , RNA Polimerase Dependente de RNA/metabolismo
11.
Microbiol Spectr ; 12(6): e0379623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712963

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an important DNA pattern recognition receptor that senses double-stranded DNA derived from invading pathogens or self DNA in cytoplasm, leading to an antiviral interferon response. A tick-borne Bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), is an RNA virus that causes a severe emerging viral hemorrhagic fever in Asia with a high case fatality rate of up to 30%. However, it is unclear whether cGAS interacts with SFTSV infection. In this study, we found that SFTSV infection upregulated cGAS RNA transcription and protein expression, indicating that cGAS is an important innate immune response against SFTSV infection. The mechanism of cGAS recognizing SFTSV is by cGAS interacting with misplaced mitochondrial DNA in the cytoplasm. Depletion of mitochondrial DNA significantly inhibited cGAS activation under SFTSV infection. Strikingly, we found that SFTSV nucleoprotein (N) induced cGAS degradation in a dose-dependent manner. Mechanically, N interacted with the 161-382 domain of cGAS and linked the cGAS to LC3. The cGAS-N-LC3 trimer was targeted to N-induced autophagy, and the cGAS was degraded in autolysosome. Taken together, our study discovered a novel antagonistic mechanism of RNA viruses, SFTSV is able to suppress the cGAS-dependent antiviral innate immune responses through N-hijacking cGAS into N-induced autophagy. Our results indicated that SFTSV N is an important virulence factor of SFTSV in mediating host antiviral immune responses. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne RNA virus that is widespread in East and Southeast Asian countries with a high fatality rate of up to 30%. Up to now, many cytoplasmic pattern recognition receptors, such as RIG-I, MDA5, and SAFA, have been reported to recognize SFTSV genomic RNA and trigger interferon-dependent antiviral responses. However, current knowledge is not clear whether SFTSV can be recognized by DNA sensor cyclic GMP-AMP synthase (cGAS). Our study demonstrated that cGAS could recognize SFTSV infection via ectopic mitochondrial DNA, and the activated cGAS-stimulator of interferon genes signaling pathway could significantly inhibit SFTSV replication. Importantly, we further uncovered a novel mechanism of SFTSV to inhibit innate immune responses by the degradation of cGAS. cGAS was degraded in N-induced autophagy. Collectively, this study illustrated a novel virulence factor of SFTSV to suppress innate immune responses through autophagy-dependent cGAS degradation.


Assuntos
Imunidade Inata , Nucleoproteínas , Nucleotidiltransferases , Phlebovirus , Phlebovirus/genética , Phlebovirus/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Humanos , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/imunologia , Células HEK293 , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Autofagia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Interferons/metabolismo , Interferons/imunologia , Interferons/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética
12.
Protein Expr Purif ; 221: 106506, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38772430

RESUMO

Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA). Our existing vaccines target these proteins, providing short-term protection, but fall short when unexpected pandemics strike. Delving deeper into Influenza's genetic makeup, we spotlight the nucleoprotein (NP) - a key player in the transcription, replication, and packaging of RNA. An intriguing characteristic of the NP is that it is highly conserved across all Influenza A variants, potentially paving the way for a more versatile and broadly protective vaccine. We designed and synthesized a novel NP-Hoc fusion protein combining Influenza A nucleoprotein and T4 phage Hoc, cloned using Gibson assembly in E. coli, and purified via ion affinity chromatography. Simultaneously, we explore the T4 coat protein Hoc, typically regarded as inconsequential in controlled viral replication. Yet, it possesses a unique ability: it can link with another protein, showcasing it on the T4 phage coat. Fusing these concepts, our study designs, expresses, and purifies a novel fusion protein named NP-Hoc. We propose this protein as the basis for a new generation of vaccines, engineered to guard broadly against Influenza A. The excitement lies not just in the immediate application, but the promise this holds for future pandemic resilience, with NP-Hoc marking a significant leap in adaptive, broad-spectrum influenza prevention.


Assuntos
Bacteriófago T4 , Escherichia coli , Proteínas Recombinantes de Fusão , Bacteriófago T4/genética , Bacteriófago T4/química , Bacteriófago T4/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Vacinas contra Influenza/genética , Vacinas contra Influenza/biossíntese , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/isolamento & purificação
13.
J Mol Biol ; 436(10): 168557, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582148

RESUMO

Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) in which a pair of viral DNA ends are bridged by a multimer of integrase (IN). Most of the high-resolution structures of HIV-1 intasomes are based on an HIV-1 IN with an Sso7d protein domain fused to the N-terminus. Sso7d-IN aggregates much less than wild-type IN and has been critical for structural studies of HIV-1 intasomes. Unexpectedly, these structures revealed that the common core architecture that mediates catalysis could be assembled in various ways, giving rise to both tetrameric and dodecameric intasomes, together with other less well-characterized species. This differs from related retroviruses that assemble unique multimeric intasomes, although the number of protomers in the intasome varies between viruses. The question of whether the additional Sso7d domain contributes to the heterogeneity of HIV-1 intasomes is therefore raised. We have addressed this by biochemical and structural studies of intasomes assembled with wild-type HIV-1 IN. Negative stain and cryo-EM reveal a similar range of multimeric intasome species as with Sso7d-IN with the same common core architecture. Stacks of intasomes resulting from domain swapping are also seen with both wild-type and Sso7d-IN intasomes. The propensity to assemble multimeric intasome species is, therefore, an intrinsic property of HIV-1 IN and is not conferred by the presence of the Sso7d domain. The recently solved intasome structures of different retroviral species, which have been reported to be tetrameric, octameric, dodecameric, and hexadecameric, highlight how a common intasome core architecture can be assembled in different ways for catalysis.


Assuntos
Integrase de HIV , HIV-1 , Integração Viral , Humanos , DNA Viral/química , Integrase de HIV/química , HIV-1/enzimologia , Modelos Moleculares , Nucleoproteínas/química , Multimerização Proteica
14.
Emerg Microbes Infect ; 13(1): 2348508, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38661085

RESUMO

The Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus that causes high mortality in humans. This enveloped virus harbors two surface glycoproteins (GP), Gn and Gc, that are released by processing of a glycoprotein precursor complex whose maturation takes place in the ER and is completed through the secretion pathway. Here, we characterized the trafficking network exploited by CCHFV GPs during viral assembly, envelopment, and/or egress. We identified membrane trafficking motifs in the cytoplasmic domains (CD) of CCHFV GPs and addressed how they impact these late stages of the viral life cycle using infection and biochemical assays, and confocal microscopy in virus-producing cells. We found that several of the identified CD motifs modulate GP transport through the retrograde trafficking network, impacting envelopment and secretion of infectious particles. Finally, we identified PACS-2 as a crucial host factor contributing to CCHFV GPs trafficking required for assembly and release of viral particles.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Transporte Proteico , Montagem de Vírus , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Domínios Proteicos , Motivos de Aminoácidos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Chlorocebus aethiops , Células HEK293 , Células Vero
15.
ACS Appl Mater Interfaces ; 16(24): 30636-30647, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38651970

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is the gold standard technique for measuring protein biomarkers due to its high sensitivity, specificity, and throughput. Despite its success, continuous advancements in ELISA and immunoassay formats are crucial to meet evolving global challenges and to address new analytical needs in diverse applications. To expand the capabilities and applications of immunoassays, we introduce a novel ELISA-like assay that we call Bioluminescent-bacteria-linked immunosorbent assay (BBLISA). BBLISA is an enzyme-free assay that utilizes the inner filter effect between the bioluminescent bacteriaAllivibrio fischeriand metallic nanoparticles (gold nanoparticles and gold iridium oxide nanoflowers) as molecular absorbers. Functionalizing these nanoparticles with antibodies induces their accumulation in wells upon binding to molecular targets, forming the classical immune-sandwich complex. Thanks to their ability to adsorb the light emitted by the bacteria, the nanoparticles can suppress the bioluminescence signal, allowing the rapid quantification of the target. To demonstrate the bioanalytical properties of the novel immunoassay platform, as a proof of principle, we detected two clinically relevant biomarkers (human immunoglobulin G and SARS-CoV-2 nucleoprotein) in human serum, achieving the same sensitivity and precision as the classic ELISA. We believe that BBLISA can be a promising alternative to the standard ELISA techniques, offering potential advancements in biomarker detection and analysis by combining nanomaterials with a low-cost, portable bioluminescent platform.


Assuntos
Biomarcadores , Ensaio de Imunoadsorção Enzimática , Ouro , Medições Luminescentes , Nanopartículas Metálicas , Humanos , Ouro/química , Biomarcadores/sangue , Biomarcadores/análise , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Aliivibrio fischeri , COVID-19/diagnóstico , COVID-19/virologia , Irídio/química
16.
Viruses ; 16(3)2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543786

RESUMO

Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.


Assuntos
Vírus da Influenza A , Proteínas do Nucleocapsídeo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Nucleoproteínas/metabolismo , RNA Viral/metabolismo , Genômica
17.
J Virol ; 98(3): e0170323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353535

RESUMO

The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.


Assuntos
Vírus da Influenza A , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Hemaglutininas , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Suínos , Estados Unidos , Proteínas do Nucleocapsídeo/metabolismo
18.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38405982

RESUMO

Negative sense RNA viruses (NSV) include some of the most detrimental human pathogens, including the influenza, Ebola and measles viruses. NSV genomes consist of one or multiple single-stranded RNA molecules that are encapsidated into one or more ribonucleoprotein (RNP) complexes. These RNPs consist of viral RNA, a viral RNA polymerase, and many copies of the viral nucleoprotein (NP). Current evolutionary relationships within the NSV phylum are based on alignment of conserved RNA-directed RNA polymerase (RdRp) domain amino acid sequences. However, the RdRp domain-based phylogeny does not address whether NP, the other core protein in the NSV genome, evolved along the same trajectory or whether several RdRp-NP pairs evolved through convergent evolution in the segmented and non-segmented NSV genomes architectures. Addressing how NP and the RdRp domain evolved may help us better understand NSV diversity. Since NP sequences are too short to infer robust phylogenetic relationships, we here used experimentally-obtained and AlphaFold 2.0-predicted NP structures to probe whether evolutionary relationships can be estimated using NSV NP sequences. Following flexible structure alignments of modeled structures, we find that the structural homology of the NSV NPs reveals phylogenetic clusters that are consistent with RdRp-based clustering. In addition, we were able to assign viruses for which RdRp sequences are currently missing to phylogenetic clusters based on the available NP sequence. Both our RdRp-based and NP-based relationships deviate from the current NSV classification of the segmented Naedrevirales, which cluster with the other segmented NSVs in our analysis. Overall, our results suggest that the NSV RdRp and NP genes largely evolved along similar trajectories and that even short pieces of genetic, protein-coding information can be used to infer evolutionary relationships, potentially making metagenomic analyses more valuable.

19.
J Infect Chemother ; 30(7): 646-650, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38309499

RESUMO

BACKGROUND: COVID-19 has become widespread in Japanese children. However, the impact of varying immunization coverage on the seroprevalence of SARS-CoV-2 in children is unknown. METHODS: We examined the SARS-CoV-2 antibody in children aged 0 to 18 who were hospitalized at a university hospital from June 2020 through May 2023. The SARS-CoV-2 anti-nucleoprotein (N) antibody and anti-RBD spike (S) protein antibody was measured. RESULTS: A total of 586 cases were enrolled. The median age was 4 years old (interquartile range 1-9), and 362 (61.8 %) were male. The seroprevalence of anti-S antibodies gradually increased from October 2021 and reached 60 percent by early 2023. The anti-N antibody increased starting in January 2022 and reached 50 percent in May 2023. There was a discrepancy in the seroprevalence of anti-S and N antibodies in children 0 years of age or 12 years and older until the fall of 2022. This discrepancy was minimal for children 1-4 years of age and relatively small in the 5-11-year-old group. DISCUSSION: The data suggests that approximately half of the children in our cohort had been infected with SARS-CoV-2 by May 2023. The discrepancy in seropositivity between the anti-S and N antibodies corresponded to the reported vaccine uptake of each target age group, which suggested protective effects of immunization. However, this effect appeared to diminish after early 2023. CONCLUSION: Age dependent discrepancy between SARS-CoV-2 anti-N and anti-S antibody in children reflected differences in vaccine coverage.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fatores Etários , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Japão/epidemiologia , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Cobertura Vacinal/estatística & dados numéricos
20.
Clin Exp Vaccine Res ; 13(1): 63-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38362369

RESUMO

This repeated cross-sectional study with two independent sample populations compared the antibody response to severe acute respiratory syndrome coronavirus 2 vaccines in Albania in July-August 2021 and 2022. In 2021, it found higher anti-spike-1 seropositivity and antibody levels in fully vaccinated individuals, especially with BNT162b2 and ChAdOx1 and to a lesser degree with CoronaVac. By 2022, all single-dose recipients showed high antibody responses, suggesting natural infection-enhanced immunity. The study indicates a significant evolution in the antibody response to different coronavirus disease 2019 vaccines and suggests that a single vaccine dose, coupled with natural infection, might suffice to maintain adequate immunity levels in an endemic scenario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...