Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(3): e202213810, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36411245

RESUMO

Herein, bioinspired total syntheses of A201A, A201D, and A201E based on a previously reported biosynthetic pathway are presented. The challenging 1,2-cis-furanoside, a core structure of the A201 family, was obtained by remote 2-quinolinecarbonyl-assisted glycosylation. We accomplished the total synthesis of A201A and A201E based on the critical 1,2-cis-furanoside moiety through late-stage glycosylation without any interference from basic dimethyl adenosine. We also confirmed the absolute configuration of A201E by total synthesis. This modular synthesis strategy enables efficient preparation of A201 family antibiotics, allowing the study of their structure-activity relationships and mode of action. This study satisfies the increasing demand for developing novel antibiotics inspired by the A201 family.


Assuntos
Antibacterianos , Nucleosídeos , Aminoglicosídeos/química , Glicosilação
2.
Angew Chem Int Ed Engl ; 61(31): e202204907, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35606651

RESUMO

Miharamycins belong to a class of peptidyl nucleoside antibiotics with a unique nine-carbon pyranosyl amino acid core and a rare 2-aminopurine moiety. Herein, we report the de novo total synthesis of miharamycin B and its biosynthetic precursor from 3-bromofuran and Garner's aldehyde through a modified Achmatowicz reaction. Many challenges were resolved toward the de novo synthesis of miharamycin B, including the introduction of a dense array of functional groups, the stereoselective construction of consecutive stereocenters, dealing with the variability of the anomeric positions, and promoting site-selectivity in the cyclization to form the tetrahydrofuran ring. This de novo synthesis strategy enables efficient preparation of 3'-substituted saccharides, allowing the study of their structure-activity relationships and mode of action, and meets the growing demand for the development of novel antibiotics inspired by miharamycin natural products.


Assuntos
Antibacterianos , Nucleosídeos , Aminoácidos/química , Antibacterianos/química , Nucleosídeos/química , Estereoisomerismo , Relação Estrutura-Atividade
3.
Microb Cell Fact ; 21(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983520

RESUMO

Epidemic diseases and antibiotic resistance are urgent threats to global health, and human is confronted with an unprecedented dilemma to conquer them by expediting development of new natural product related drugs. C-nucleoside antibiotics, a remarkable group of microbial natural products with diverse biological activities, feature a heterocycle base linked with a ribosyl moiety via an unusual C-glycosidic bond, and have played significant roles in healthcare and for plant protection. Elucidating how nature biosynthesizes such a group of antibiotics has provided the basis for engineered biosynthesis as well as targeted genome mining of more C-nucleoside antibiotics towards improved properties. In this review, we mainly summarize the recent advances on the biosynthesis of C-nucleoside antibiotics, and we also tentatively discuss the future developments on rationally accessing C-nucleoside diversities in a more efficient and economical way via synthetic biology strategies.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/biossíntese , Nucleosídeos/biossíntese , Biologia Sintética/métodos , Actinobacteria/genética , Produtos Biológicos/química , Streptomyces/genética , Streptomyces/metabolismo , Biologia Sintética/tendências
4.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4158-4168, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34984865

RESUMO

Pentostatin is a nucleoside antibiotics with a strong inhibitory effect on adenosine deaminase, and is widely used in the clinical treatment of malignant tumors. However, the high cost hampers its application. In the past 10 years, the biosynthesis of pentostatin were focused on strain breeding, optimization of medium composition and fermentation process. To date, there are no reviews summarizing the elucidated biosynthetic mechanism of pentostatin. This review starts by introducing the various chemical route for production of pentostatin, followed by summarizing the mechanisms of pentostatin biosynthesis in different microorganisms. Finally, challenges for biosynthesis of pentostatin were discussed, and strategies for regulating and improving the microbial synthesis of pentostatin were proposed.


Assuntos
Antibacterianos , Pentostatina
5.
Biotechnol Adv ; 46: 107673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33276073

RESUMO

Antibiotic resistance poses an increasing threat to global health, and it is urgent to reverse the present trend by accelerating development of new natural product derived drugs. Nucleoside antibiotics, a valuable family of promising natural products with remarkable structural features and diverse biological activities, have played significant roles in healthcare and for plant protection. Understanding the biosynthesis of these intricate molecules has provided a foundation for bioengineering the microbial cell factory towards yield enhancement and structural diversification. In this review, we summarize the recent progresses in employing synthetic biology-based strategies to improve the production of target nucleoside antibiotics. Moreover, we delineate the advances on rationally accessing the chemical diversities of natural nucleoside antibiotics.


Assuntos
Actinobacteria , Produtos Biológicos , Actinobacteria/genética , Antibacterianos , Nucleosídeos , Biologia Sintética
6.
Chinese Journal of Biotechnology ; (12): 4158-4168, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-921496

RESUMO

Pentostatin is a nucleoside antibiotics with a strong inhibitory effect on adenosine deaminase, and is widely used in the clinical treatment of malignant tumors. However, the high cost hampers its application. In the past 10 years, the biosynthesis of pentostatin were focused on strain breeding, optimization of medium composition and fermentation process. To date, there are no reviews summarizing the elucidated biosynthetic mechanism of pentostatin. This review starts by introducing the various chemical route for production of pentostatin, followed by summarizing the mechanisms of pentostatin biosynthesis in different microorganisms. Finally, challenges for biosynthesis of pentostatin were discussed, and strategies for regulating and improving the microbial synthesis of pentostatin were proposed.


Assuntos
Antibacterianos , Pentostatina
7.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31676476

RESUMO

Formycin A (FOR-A) and pyrazofurin A (PRF-A) are purine-related C-nucleoside antibiotics in which ribose and a pyrazole-derived base are linked by a C-glycosidic bond. However, the logic underlying the biosynthesis of these molecules has remained largely unexplored. Here, we report the discovery of the pathways for FOR-A and PRF-A biosynthesis from diverse actinobacteria and propose that their biosynthesis is likely initiated by a lysine N6-monooxygenase. Moreover, we show that forT and prfT (involved in FOR-A and PRF-A biosynthesis, respectively) mutants are correspondingly capable of accumulating the unexpected pyrazole-related intermediates 4-amino-3,5-dicarboxypyrazole and 3,5-dicarboxy-4-oxo-4,5-dihydropyrazole. We also decipher the enzymatic mechanism of ForT/PrfT for C-glycosidic bond formation in FOR-A/PRF-A biosynthesis. To our knowledge, ForT/PrfT represents an example of ß-RFA-P (ß-ribofuranosyl-aminobenzene 5'-phosphate) synthase-like enzymes governing C-nucleoside scaffold construction in natural product biosynthesis. These data establish a foundation for combinatorial biosynthesis of related purine nucleoside antibiotics and also open the way for target-directed genome mining of PRF-A/FOR-A-related antibiotics.IMPORTANCE FOR-A and PRF-A are C-nucleoside antibiotics known for their unusual chemical structures and remarkable biological activities. Deciphering the enzymatic mechanism for the construction of a C-nucleoside scaffold during FOR-A/PRF-A biosynthesis will not only expand the biochemical repertoire for novel enzymatic reactions but also permit target-oriented genome mining of FOR-A/PRF-A-related C-nucleoside antibiotics. Moreover, the availability of FOR-A/PRF-A biosynthetic gene clusters will pave the way for the rational generation of designer FOR-A/PRF-A derivatives with enhanced/selective bioactivity via synthetic biology strategies.


Assuntos
Antibacterianos/biossíntese , Formicinas/biossíntese , Nocardia/metabolismo , Ribonucleosídeos/biossíntese , Streptomyces/metabolismo , Amidas , Pirazóis , Ribose
8.
Curr Med Chem ; 25(42): 6013-6029, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600753

RESUMO

The bacterial resistance to antibiotics constitutes more than ever a severe public health problem. The enzymes involved in bacterial peptidoglycan biosynthesis are pertinent targets for developing new antibiotics, notably the MraY transferase that is not targeted by any marketed drug. Many research groups are currently working on the study or the inhibition of this enzyme. After a concise overview of the role, mechanism and inhibition of MraY, the structure-activity relationships of 5'-triazole-containing aminoribosyluridine inhibitors, we previously synthetized, will be presented. The recently published MraY X-ray structures allowed us to achieve a molecular virtual high-throughput screening of commercial databases and our in-house library resulting in the identification of promising compounds for the further development of new antibiotics.


Assuntos
Antibacterianos/química , Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Transferases/antagonistas & inibidores , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Peptidoglicano/metabolismo , Relação Estrutura-Atividade , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos) , Triazóis/química , Triazóis/metabolismo
9.
Sci China Life Sci ; 60(9): 939-947, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28785949

RESUMO

There is an urgent need for new antifungal agents to treat or combat fungal infection in humans and plants. Antifungal nucleoside antibiotics are an important family of natural products with distinctive structural features. Understanding their biosynthetic machinery is of great importance for the improvement of antibiotics titers. More importantly, it is a requisite for combinatorial biosynthesis to create hybrid nucleoside antibiotics. We herein focus on findings on the natural and designed biosynthesis of this important family of nucleoside antibiotics.


Assuntos
Antifúngicos/metabolismo , Vias Biossintéticas , Nucleosídeos/biossíntese , Antifúngicos/química , Engenharia Metabólica , Nucleosídeos/química , Nucleosídeos/genética
10.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258148

RESUMO

2'-Chloropentostatin (2'-Cl PTN, 2'-chloro-2'-deoxycoformycin) and 2'-amino-2'-deoxyadenosine (2'-amino dA) are two adenosine-derived nucleoside antibiotics coproduced by Actinomadura sp. strain ATCC 39365. 2'-Cl PTN is a potent adenosine deaminase (ADA) inhibitor featuring an intriguing 1,3-diazepine ring, as well as a chlorination at C-2' of ribose, and 2'-amino dA is an adenosine analog showing bioactivity against RNA-type virus infection. However, the biosynthetic logic of them has remained poorly understood. Here, we report the identification of a single gene cluster (ada) essential for the biosynthesis of 2'-Cl PTN and 2'-amino dA. Further systematic genetic investigations suggest that 2'-Cl PTN and 2'-amino dA are biosynthesized by independent pathways. Moreover, we provide evidence that a predicted cation/H+ antiporter, AdaE, is involved in the chlorination step during 2'-Cl PTN biosynthesis. Notably, we demonstrate that 2'-amino dA biosynthesis is initiated by a Nudix hydrolase, AdaJ, catalyzing the hydrolysis of ATP. Finally, we reveal that the host ADA (designated ADA1), capable of converting adenosine/2'-amino dA to inosine/2'-amino dI, is not very sensitive to the powerful ADA inhibitor pentostatin. These findings provide a basis for the further rational pathway engineering of 2'-Cl PTN and 2'-amino dA production.IMPORTANCE 2'-Cl PTN/PTN and 2'-amino dA have captivated the great interests of scientists, owing to their unusual chemical structures and remarkable bioactivities. However, the precise logic for their biosynthesis has been elusive for decades. Actually, the identification and elucidation of their biosynthetic pathways not only enrich the biochemical repertoire of novel enzymatic reactions but may also lay solid foundations for the pathway engineering and combinatorial biosynthesis of this family of purine nucleoside antibiotics to generate novel hybrid analogs with improved features.


Assuntos
Actinomycetales/metabolismo , Proteínas de Bactérias/metabolismo , Desoxiadenosinas/biossíntese , Pentostatina/análogos & derivados , Actinomycetales/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Família Multigênica , Pentostatina/biossíntese
11.
World J Microbiol Biotechnol ; 33(4): 66, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260195

RESUMO

Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.


Assuntos
Antibacterianos/biossíntese , Engenharia Genética/métodos , Nucleosídeos/biossíntese , Streptomyces/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Vias Biossintéticas , Descoberta de Drogas , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Família Multigênica , Nucleosídeos/farmacologia , Streptomyces/metabolismo
12.
Cell Chem Biol ; 24(2): 171-181, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28111097

RESUMO

Pentostatin (PTN, deoxycoformycin) and arabinofuranosyladenine (Ara-A, vidarabine) are purine nucleoside antibiotics used clinically to treat hematological cancers and human DNA virus infections, respectively. PTN has a 1,3-diazepine ring, and Ara-A is an adenosine analog with an intriguing epimerization at the C-2' hydroxyl group. However, the logic underlying the biosynthesis of these interesting molecules has long remained elusive. Here, we report that the biosynthesis of PTN and Ara-A employs an unusual protector-protégé strategy. To our surprise, we determined that a single gene cluster governs PTN and Ara-A biosynthesis via two independent pathways. Moreover, we verified that PenB functions as a reversible oxidoreductase for the final step of PTN. Remarkably, we provided the first direct biochemical evidence that PTN can protect Ara-A from deamination by selective inhibition of the host adenosine deaminase. These findings expand our knowledge of natural product biosynthesis and open the way for target-directed genome mining of Ara-A/PTN-related antibiotics.


Assuntos
Antibacterianos/biossíntese , Inibidores Enzimáticos/metabolismo , Pentostatina/biossíntese , Vidarabina/biossíntese , Adenosina Desaminase/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Sequência de Bases , Análise por Conglomerados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pentostatina/química , Pentostatina/farmacologia , Análise de Sequência de DNA , Streptomyces antibioticus/genética , Vidarabina/química , Vidarabina/farmacologia
13.
Protein Cell ; 7(9): 673-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412636

RESUMO

Polyoxin is a group of structurally-related peptidyl nucleoside antibiotics bearing C-5 modifications on the nucleoside skeleton. Although the structural diversity and bioactivity preference of polyoxin are, to some extent, affected by such modifications, the biosynthetic logic for their occurence remains obscure. Here we report the identification of PolB in polyoxin pathway as an unusual UMP C-5 methylase with thymidylate synthase activity which is responsible for the C-5 methylation of the nucleoside skeleton. To probe its molecular mechanism, we determined the crystal structures of PolB alone and in complexes with 5-Br UMP and 5-Br dUMP at 2.15 Å, 1.76 Å and 2.28 Å resolutions, respectively. Loop 1 (residues 117-131), Loop 2 (residues 192-201) and the substrate recognition peptide (residues 94-102) of PolB exhibit considerable conformational flexibility and adopt distinct structures upon binding to different substrate analogs. Consistent with the structural findings, a PolB homolog that harbors an identical function from Streptomyces viridochromogenes DSM 40736 was identified. The discovery of UMP C5-methylase opens the way to rational pathway engineering for polyoxin component optimization, and will also enrich the toolbox for natural nucleotide chemistry.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Streptomyces/enzimologia , Cristalografia por Raios X , Domínios Proteicos , Estrutura Secundária de Proteína , Nucleosídeos de Pirimidina/biossíntese
14.
Bioorg Med Chem ; 24(24): 6340-6347, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27021004

RESUMO

This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Transferases/antagonistas & inibidores , Proteínas Virais/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/química , Nucleosídeos/química , Nucleosídeos/farmacologia , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
15.
J Ind Microbiol Biotechnol ; 43(2-3): 401-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26153500

RESUMO

Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Antibacterianos/biossíntese , Engenharia Metabólica , Nucleosídeos/biossíntese , Actinobacteria/enzimologia , Animais , Antibacterianos/química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Humanos , Nucleosídeos/química , Biologia Sintética
16.
Protein & Cell ; (12): 673-683, 2016.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-757406

RESUMO

Polyoxin is a group of structurally-related peptidyl nucleoside antibiotics bearing C-5 modifications on the nucleoside skeleton. Although the structural diversity and bioactivity preference of polyoxin are, to some extent, affected by such modifications, the biosynthetic logic for their occurence remains obscure. Here we report the identification of PolB in polyoxin pathway as an unusual UMP C-5 methylase with thymidylate synthase activity which is responsible for the C-5 methylation of the nucleoside skeleton. To probe its molecular mechanism, we determined the crystal structures of PolB alone and in complexes with 5-Br UMP and 5-Br dUMP at 2.15 Å, 1.76 Å and 2.28 Å resolutions, respectively. Loop 1 (residues 117-131), Loop 2 (residues 192-201) and the substrate recognition peptide (residues 94-102) of PolB exhibit considerable conformational flexibility and adopt distinct structures upon binding to different substrate analogs. Consistent with the structural findings, a PolB homolog that harbors an identical function from Streptomyces viridochromogenes DSM 40736 was identified. The discovery of UMP C5-methylase opens the way to rational pathway engineering for polyoxin component optimization, and will also enrich the toolbox for natural nucleotide chemistry.


Assuntos
Proteínas de Bactérias , Química , Cristalografia por Raios X , Metiltransferases , Química , Domínios Proteicos , Estrutura Secundária de Proteína , Nucleosídeos de Pirimidina , Streptomyces
17.
Biotechnol Bioeng ; 112(9): 1865-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25827606

RESUMO

Polyoxin and nikkomycin are naturally occurring peptidyl nucleoside antibiotics with potent antifungal bioactivity. Both exhibit similar structural features, having a nucleoside skeleton and one or two peptidyl moieties. Combining the refactoring of the polyoxin producer Streptomyces aureochromogenes with import of the hydroxypyridylhomothreonine pathway of nikkomycin allows the targeted production of three designer nucleoside antibiotics designated as nikkoxin E, F, and G. These structures were determined by NMR and/or high resolution mass spectrometry. Remarkably, the introduction of an extra copy of the nikS gene encoding an ATP-dependent ligase significantly enhanced the production of the designer antibiotics. Moreover, all three nikkoxins displayed improved bioactivity against several pathogenic fungi as compared with the naturally-occurring antibiotics. These data provide a feasible model for high efficiency generation of nucleoside antibiotics related to polyoxins and nikkomycins in a polyoxin cell factory via synthetic biology strategy.


Assuntos
Antibacterianos/metabolismo , Engenharia Metabólica/métodos , Aminoglicosídeos/química , Aminoglicosídeos/genética , Aminoglicosídeos/metabolismo , Antibacterianos/química , Ressonância Magnética Nuclear Biomolecular , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/genética , Nucleosídeos de Pirimidina/metabolismo , Streptomyces/metabolismo , Biologia Sintética
18.
Trends Microbiol ; 23(2): 110-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25468791

RESUMO

The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics.


Assuntos
Antibacterianos/biossíntese , Antifúngicos/metabolismo , Antivirais/metabolismo , Biotecnologia , Nucleosídeos/biossíntese , Aminoglicosídeos/biossíntese , Aminoglicosídeos/química , Antibacterianos/química , Antifúngicos/química , Antivirais/química , Citidina/análogos & derivados , Citidina/biossíntese , Citosina/análogos & derivados , Citosina/biossíntese , Citosina/química , Engenharia Genética , Nucleosídeos/química , Nucleosídeos/metabolismo , Nucleosídeos de Pirimidina/biossíntese , Nucleosídeos de Pirimidina/química
19.
Beilstein J Org Chem ; 10: 1706-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161730

RESUMO

This review covers sixty original publications dealing with the application of multicomponent reactions (MCRs) in the synthesis of novel nucleoside analogs. The reported approaches were employed for modifications of the parent nucleoside core or for de novo construction of a nucleoside scaffold from non-nucleoside substrates. The cited references are grouped according to the usually recognized types of the MCRs. Biochemical properties of the novel nucleoside analogs are also presented (if provided by the authors).

20.
Bioorg Med Chem ; 22(10): 2875-86, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24746466

RESUMO

Aminoacyl-sulfamoyl adenosines are well-known nanomolar inhibitors of the corresponding prokaryotic and eukaryotic tRNA synthetases in vitro. Inspired by the aryl-tetrazole containing compounds of Cubist Pharmaceuticals and the modified base as found in the natural antibiotic albomycin, the selectivity issue of the sulfamoylated adenosines prompted us to investigate the pharmacophoric importance of the adenine base. We therefore synthesized and evaluated several isoleucyl-sulfamoyl nucleoside analogues with either uracil, cytosine, hypoxanthine, guanine, 1,3-dideaza-adenine (benzimidazole) or 4-nitro-benzimidazole as the heterocyclic base. Based on the structure and antibacterial activity of microcin C, we also prepared their hexapeptidyl conjugates in an effort to improve their uptake potential. We further compared their antibacterial activity with the parent isoleucyl-sulfamoyl adenosine (Ile-SA), both in in vitro and in cellular assays. Surprisingly, the strongest in vitro inhibition was found for the uracil containing analogue 16f. Unfortunately, only very weak growth inhibitory properties were found as of low uptake. The results are discussed in the light of previous literature findings.


Assuntos
Adenosina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Adenosina/análogos & derivados , Adenosina/química , Antibacterianos/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Conformação Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...