Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(8): 3337-3344, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35490278

RESUMO

BACKGROUND: Cotton with resistance to 2,4-d choline, glufosinate and glyphosate allows over-the-top use of these herbicides for postemergence weed control. Nontransgenic cotton is highly responsive to low rates of 2,4-d, causing concern among farmers when the herbicide is applied near the crop. Injury to nearby cotton following application of 2,4-d choline is sometimes blamed on volatilization of the herbicide. RESULTS: A large-scale experiment was conducted in 2018-2021 to better understand causes of damage to nearby sensitive cotton following an application of 2,4-d choline plus glufosinate-ammonium. The herbicides were applied to 0.4 ha in the center of a 4-ha non-Enlist cotton field. At 30 min after application, air samplers were established in the treated center and outside the treated area in cardinal directions. The 72-h cumulative air concentration of 2,4-d in the swath ranged from 3.3 to 7.1 ng m-3 , and most volatile residues (5.0-25.5 ng m-3 ) were detected in samplers established in the downwind direction directly adjacent to the treated field. Cotton plants in three downwind transects that were covered for 30 min after application were not damaged by 2,4-d, whereas noncovered plants along the downwind transects were injured. No cotton injury occurred outside the treated area, except in the downwind direction during application even though wind direction changed after application. CONCLUSION: 2,4-d choline volatilizes, but findings show that the volatilization is not sufficient to damage cotton in the neighboring area following applications, pointing to the importance of applicators understanding wind direction/shift during the application along with proximity of sensitive crops in the downwind direction. © 2022 Society of Chemical Industry.


Assuntos
Gossypium , Herbicidas , Ácido 2,4-Diclorofenoxiacético , Colina , Produtos Agrícolas , Herbicidas/análise
2.
Pest Manag Sci ; 78(4): 1519-1528, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34964248

RESUMO

BACKGROUND: There is renewed interest amongst crop protection professionals and regulators in the adoption of spray hoods to further reduce pesticide off-target movement during applications. Although the benefits of sprayer hoods have been reported since the early 1950s, adoption has been relatively low among farmers and applicators. The objective of this study was to evaluate the effectiveness of spray hoods in reducing pesticide drift of spray solutions from nozzles typically used for herbicide applications in row crops with tolerance to dicamba or 2,4-D. RESULTS: Hooded applications substantially reduced spray drift potential across all treatment scenarios compared to conventional applications. Hooded applications using the AIXR nozzle without drift-reducing adjuvant (DRA) had a similar area under the drift curve (31.5) compared to conventional applications (open sprayer) using the TTI nozzle with DRA (27.7), despite the major droplet size differences between these treatments (DV50  = 447.5 and 985 µm, respectively). CONCLUSION: These results indicate that the adoption of spray hoods combined with proper nozzle selection, and the use of DRAs can substantially reduce spray drift potential during pesticide applications. The use of this technology can be complementary to other drift-reducing technologies. © 2021 Society of Chemical Industry.


Assuntos
Herbicidas , Praguicidas , Agricultura/métodos , Produtos Agrícolas , Tamanho da Partícula , Praguicidas/análise
3.
Pest Manag Sci ; 78(4): 1538-1546, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34964546

RESUMO

BACKGROUND: Early-postemergence herbicide applications in the USA often include residual herbicides such as S-metolachlor to suppress late late-emerging Amaranthus spp. Although this practice benefits weed control, herbicide tankmixes can influence spray droplet size and drift potential during applications. The addition of S-metolachlor products to dicamba spray solutions generally decreases spray droplet size and increases spray drift potential. Advances in formulation technology fostered the development of products with reduced spray drift potential, especially for herbicide premixes containing multiple active ingredients. The objective of this study was to compare the drift potential of a novel dicamba plus S-metolachlor premix formulation (capsule suspension) against a tankmix containing dicamba (soluble liquid) and S-metolachlor (emulsifiable concentrate) using different venturi nozzles. RESULTS: The MUG nozzle had greater DV0.5 (1128.6 µm) compared to the ULDM (930.3 µm), TDXL-D (872.9 µm), and TTI nozzles (854.8 µm). The premix formulation had greater DV0.5 (971.0 µm) compared to the tankmix (922.3 µm). Nozzle influenced spray drift deposition (P < 0.0001) and soybean biomass reduction (P = 0.0465). Herbicide formulation influenced spray drift deposition (P < 0.0001), and biomass reduction of soybean (P < 0.0001) and cotton (P = 0.0479). The novel capsule suspension formulation (premix) of dicamba plus S-metolachlor had reduced area under the drift curve (AUDC) (577.6) compared to the tankmix (913.7). Applications using the MUG nozzle reduced AUDC (459.9) compared to the other venturi nozzles (ranging from 677.4 to 1141.7). CONCLUSION: Study results evidence that advances in pesticide formulation can improve pesticide drift mitigation. © 2021 Society of Chemical Industry.


Assuntos
Dicamba , Herbicidas , Acetamidas , Agricultura/métodos , Controle de Plantas Daninhas
4.
J Agric Food Chem ; 69(48): 14435-14444, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817161

RESUMO

Dicamba is an important herbicide for controlling post-emergent resistant weeds in soybean farming. Recently, the scientific community and general public have further examined off-target transport mechanisms (e.g., spray drift, volatilization, and tank contamination) and the visual responses of soybeans to ultralow dicamba concentrations. This paper synthesizes key chemical concepts and environmental processes associated with dicamba formulations, transport mechanisms, drift measurements, and plant responses. This paper proposes additional areas of research and actions to increase our understanding and communicate the science findings, which should provide farmers with more robust tools and practices for sustainable dicamba use.


Assuntos
Dicamba , Herbicidas , Agricultura , Herbicidas/análise , Herbicidas/farmacologia , Glycine max , Volatilização
5.
Pest Manag Sci ; 77(6): 2719-2725, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33497023

RESUMO

BACKGROUND: Field experiments were conducted across three sites in Mississippi in 2018 to evaluate carrier volume and spray quality effects on glyphosate-resistant soybean response to dicamba. Treatments consisted of dicamba (5.6 g a.e. ha-1 ) plus glyphosate (8.7 g a.e. ha-1 ) applied to soybean at R1 using 140, 105, 70, 35, 14, or 7 L ha-1 . Each carrier volume was applied with TT11002 and XR110015 nozzles which resulted in Fine and Coarse spray qualities, respectively. A colorimetric dye was included in spray solutions to quantify spray coverage of each treatment. RESULTS: Spray coverage decreased with carrier volume and ranged from 21% to 3%. Conversely, soybean injury increased as carrier volume decreased. Soybean height 14 days after treatment (DAT) was reduced 34% to 37% from carrier volumes of 70 to 140 L ha-1 ; however, carrier volumes of 14 and 7 L ha-1 resulted in 45% height reductions. By 28 DAT soybean height was similar among volumes of 35 to 140 L ha-1 (39% to 42% reduction); however, volumes of 14 and 7 L ha-1 resulted in 46% and 51% reductions, respectively. Grain yield was reduced 14% from treatment at 140 L ha-1 and reductions increased with decreased carrier volume to 41% loss at 7 L ha-1 . Averaged across carrier volumes, Fine and Coarse sprays caused 30% and 26% yield loss, respectively. CONCLUSION: These data suggest that carrier volume profoundly affects soybean response to dicamba. Therefore, soybean response to sublethal dicamba doses applied at a constant carrier volume may not reflect physical drift exposure. © 2021 Society of Chemical Industry.


Assuntos
Dicamba , Herbicidas , Glicina/análogos & derivados , Herbicidas/farmacologia , Mississippi , Glycine max , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA