Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39353426

RESUMO

During cell division, chromosomes build kinetochores that attach to spindle microtubules. Kinetochores usually form at the centromeres, which contain CENP-A nucleosomes. The outer kinetochore, which is the core attachment site for microtubules, is composed of the KMN network (Knl1c, Mis12c, and Ndc80c complexes) and is recruited downstream of CENP-A and its partner CENP-C. In C. elegans oocytes, kinetochores have been suggested to form independently of CENP-A nucleosomes. Yet kinetochore formation requires CENP-C, which acts in parallel to the nucleoporin MEL-28ELYS. Here, we used a combination of RNAi and Degron-based depletion of CENP-A (or downstream CENP-C) to demonstrate that both proteins are in fact responsible for a portion of outer kinetochore assembly during meiosis I and are essential for accurate chromosome segregation. The remaining part requires the coordinated action of KNL-2 (ortholog of human M18BP1) and of the nucleoporin MEL-28ELYS. Accordingly, co-depletion of CENP-A (or CENP-C) and KNL-2M18BP1 (or MEL-28ELYS) prevented outer kinetochore assembly in oocytes during meiosis I. We further found that KNL-2M18BP1 and MEL-28ELYS are interdependent for kinetochore localization. Using engineered mutants, we demonstrated that KNL-2M18BP1 recruits MEL-28ELYS at meiotic kinetochores through a specific N-terminal domain, independently of its canonical CENP-A loading factor activity. Finally, we found that meiosis II outer kinetochore assembly was solely dependent on the canonical CENP-A/CENP-C pathway. Thus, like in most cells, outer kinetochore assembly in C. elegans oocytes depends on centromeric chromatin. However, during meiosis I, an additional KNL-2M18BP1 and MEL-28ELYS pathway acts in a non-redundant manner and in parallel to canonical centromeric chromatin.

2.
Ecotoxicol Environ Saf ; 282: 116703, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986335

RESUMO

3-methyl-4-nitrophenol (PNMC), a degradation product of organophosphorus insecticides and a byproduct of fuel combustion, exerting endocrine-disrupting effects. However, its impact on the meiotic process of oocytes remains unclear. In the present study, we investigated the effects of PNMC on meiotic maturation of mouse oocytes in vitro and related mechanisms. Morphologically, PNMC-exposure affected germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Proteomic analysis suggested that PNMC-exposure altered oocyte protein expression that are associated with cytoskeleton, mitochondrial function and oxidative stress. Further studies demonstrated that PNMC-exposure disrupted spindle assembly and chromosome alignment, caused sustained activation of spindle assembly checkpoint (SAC), and arrested meiosis in oocytes. Specifically, PNMC-exposure interfered with the function of microtubule organizing centers (MTOCs) by significantly reducing phosphorylated mitogen activated protein kinase (p-MAPK) expression and disrupting the localization of Pericentrin and p-Aurora A, leading to spindle assembly failure. Besides, PNMC-exposure also increased α-tubulin acetylation, decreased microtubule stability. Moreover, PNMC-exposure impaired mitochondrial function, evidenced by abnormal mitochondrial distribution, decreased mitochondrial membrane potential and ATP levels, release of Cytochrome C into the cytoplasm, and elevated ROS levels. As a result, exposure to PNMC caused DNA damage and early apoptosis in oocytes. Fortunately, melatonin was able to promote oocyte maturation by removing the excessive ROS and enhancing mitochondrial function. These results highlight the adverse effects of PNMC on meiotic maturation, and underscore the protective role of melatonin against PNMC-induced damage.


Assuntos
Meiose , Melatonina , Mitocôndrias , Oócitos , Fuso Acromático , Animais , Oócitos/efeitos dos fármacos , Melatonina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Feminino , Fuso Acromático/efeitos dos fármacos , Meiose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Inseticidas/toxicidade
3.
FASEB J ; 38(13): e23750, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38888878

RESUMO

Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.


Assuntos
Cinesinas , Meiose , Microtúbulos , Oócitos , Fuso Acromático , Animais , Cinesinas/metabolismo , Cinesinas/genética , Meiose/fisiologia , Oócitos/metabolismo , Microtúbulos/metabolismo , Camundongos , Fuso Acromático/metabolismo , Feminino , Actinas/metabolismo , Cinetocoros/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167228, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38734318

RESUMO

BACKGROUND: Early embryonic arrest and fragmentation (EEAF) is a common cause of female infertility, but the genetic causes remain to be largely unknown. CIP2A encodes the cellular inhibitor of PP2A, playing a crucial role in mitosis and mouse oocyte meiosis. METHODS: Exome sequencing and Sanger sequencing were performed to identify candidate causative genes in patients with EEAF. The pathogenicity of the CIP2A variant was assessed and confirmed in cultured cell lines and human oocytes through Western blotting, semi-quantitative RT-PCR, TUNEL staining, and fluorescence localization analysis. FINDINGS: We identified CIP2A (c.1510C > T, p.L504F) as a novel disease-causing gene in human EEAF from a consanguineous family. L504 is highly conserved throughout evolution. The CIP2A variant (c.1510C > T, p.L504F) reduced the expression level of the mutant CIP2A protein, leading to the abnormal aggregation of mutant CIP2A protein and cell apoptosis. Abnormal aggregation of CIP2A protein and chromosomal dispersion occurred in the patient's oocytes and early embryos. We further replicated the patient phenotype by knockdown CIP2A in human oocytes. Additionally, CIP2A deficiency resulted in decreased levels of phosphorylated ERK1/2. INTERPRETATION: We first found that the CIP2A loss-of-function variant associate with female infertility characterized by EEAF. Our findings suggest the uniqueness and importance of CIP2A gene in human oocyte and early embryo development. FUNDING: This work was supported by National Key Research and Development Program of China (2023YFC2706302), the National Natural Science Foundation of China (81000079, 81170165, and 81870959), the HUST Academic Frontier Youth Team (2016QYTD02), and the Key Research of Huazhong University of Science and Technology, Tongji Hospital (2022A20).


Assuntos
Autoantígenos , Infertilidade Feminina , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Oócitos , Humanos , Feminino , Autoantígenos/genética , Autoantígenos/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/patologia , Infertilidade Feminina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Apoptose/genética , Mutação com Perda de Função , Adulto , Sequenciamento do Exoma , Animais , Linhagem , Camundongos
5.
Theriogenology ; 225: 43-54, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788628

RESUMO

Extensive research has been conducted on the role of CXCR3 in immune responses and inflammation. However, the role of CXCR3 in the reproductive system, particularly in oocyte development, remains unknown. In this study, we present findings on the involvement of CXCR3 in the meiotic division process of mouse oocytes. We found CXCR3 was expressed consistently throughout the entire maturation process of mouse oocyte. Inhibition of CXCR3 impaired the asymmetric division of oocyte, while the injection of Cxcr3 mRNA was capable of restoring these defects. Further study showed that inhibition of CXCR3 perturbed spindle migration by affecting LIMK/cofilin pathway-mediated actin remodeling. Knockout of CXCR3 led to an upregulation of actin-binding protein and an increased ATP level in GV-stage oocytes, while maintaining normal actin dynamics during the process of meiosis. Additionally, we noticed the expression level of DYNLT1 is markedly elevated in CXCR3-null oocytes. DYNLT1 bound with the Arp2/3 complex, and knockdown of DYNLT1 in CXCR3-null oocytes impaired the organization of cytoplasmic actin, suggesting the regulatory role of DYNLT1 in actin organization, and the compensatory expression of DYNLT1 may contribute to maintain normal actin dynamics in CXCR3-knockout oocytes. In summary, our findings provide insights into the intricate network of actin dynamics associated with CXCR3 during oocyte meiosis.


Assuntos
Actinas , Oócitos , Receptores CXCR3 , Animais , Oócitos/metabolismo , Oócitos/fisiologia , Camundongos , Actinas/metabolismo , Actinas/genética , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Feminino , Meiose/fisiologia , Camundongos Knockout
6.
EMBO Rep ; 24(11): e57227, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795949

RESUMO

Chromosome segregation errors in mammalian oocyte meiosis lead to developmentally compromised aneuploid embryos and become more common with advancing maternal age. Known contributors include age-related chromosome cohesion loss and spindle assembly checkpoint (SAC) fallibility in meiosis-I. But how effective the SAC is in meiosis-II and how this might contribute to age-related aneuploidy is unknown. Here, we developed genetic and pharmacological approaches to directly address the function of the SAC in meiosis-II. We show that the SAC is insensitive in meiosis-II oocytes and that as a result misaligned chromosomes are randomly segregated. Whilst SAC ineffectiveness in meiosis-II is not age-related, it becomes most prejudicial in oocytes from older females because chromosomes that prematurely separate by age-related cohesion loss become misaligned in meiosis-II. We show that in the absence of a robust SAC in meiosis-II these age-related misaligned chromatids are missegregated and lead to aneuploidy. Our data demonstrate that the SAC fails to prevent cell division in the presence of misaligned chromosomes in oocyte meiosis-II, which explains how age-related cohesion loss can give rise to aneuploid embryos.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Feminino , Animais , Fuso Acromático/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Meiose/genética , Oócitos , Cromátides , Aneuploidia , Segregação de Cromossomos , Mamíferos/genética
7.
Mol Hum Reprod ; 29(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37068378

RESUMO

Strategies to maximize individual fertility chances are constant requirements of ART. In vitro folliculogenesis may represent a valid option to create a large source of immature ovarian follicles in ART. Efforts are being made to set up mammalian follicle culture protocols with suitable FSH stimuli. In this study, a new type of recombinant FSH (KN015) with a prolonged half-life is proposed as an alternative to canonical FSH. KN015 supports the in vitro development of mouse follicles from primary to preovulatory stage with higher efficiency than canonical FSH and enhanced post-fertilization development rates of the ovulated oocytes. The use of KN015 also allows us to compare the dynamic transcriptome changes in oocytes and granulosa cells at different stages, in vivo and in vitro. In particular, KN015 facilitates mRNA accumulation in growing mouse oocytes and prevents spontaneous luteinization of granulosa cells in vitro. Novel analyses of transcriptome changes in this study reveal that the in vivo oocytes were more efficient than in vitro oocytes in terms of maternal mRNA clearing during meiotic maturation. KN015 promotes the degradation of maternal mRNA during in vitro oocyte maturation, improves cytoplasmic maturation and, therefore, enhances embryonic developmental potential. These findings establish new transcriptome data for oocyte and granulosa cells at the key stages of follicle development, and should help to widen the use of KN015 as a valid and commercially available hormonal support enabling optimized in vitro development of follicles and oocytes.


Assuntos
RNA Mensageiro Estocado , Transcriptoma , Feminino , Camundongos , Animais , RNA Mensageiro Estocado/metabolismo , Oogênese/genética , Oócitos/metabolismo , Células da Granulosa , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Meiose , Mamíferos
8.
Chem Biol Interact ; 369: 110277, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36414027

RESUMO

2-Methoxyestradiol (2-ME2) is a metabolite of 17ß-estradiol and is currently in clinical trials as an antitumor agent. Here we found 2-ME2 level remains stable in the local environment of ovaries but declines in serum in aging mice, and exogenous 2-ME2 impacts the meiotic maturation of mouse oocytes in dose-dependent manner. In vitro 2-ME2 application arrested oocytes at metaphase I (MI), with abnormal spindle structure and chromosome alignment. 2-ME2 exposure induced excessive production of reactive oxygen species (ROS) and malondialdehyde, as well as accelerated apoptosis progression. 2-ME2 unbalanced mitochondrial dynamics by increasing DRP1 and MFN1 while decreasing Opa1. Similar phenotypes were also observed in oocytes from mice injected intraperitoneally with 2-ME2. Taken together, this study indicates 2-ME2 exposure impairs oocyte meiotic maturation through inducing mitochondrial imbalance, oxidative stress and apoptosis. The gradual decline in oocyte quality and quantity may be associated with the stable 2-ME2 in ovaries during female reproductive aging.


Assuntos
Meiose , Oócitos , Feminino , Camundongos , Animais , 2-Metoxiestradiol/farmacologia , 2-Metoxiestradiol/metabolismo , Reprodução , Envelhecimento
9.
Exp Cell Res ; 405(2): 112657, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081985

RESUMO

Checkpoint kinases (Chk) 1/2 are known for DNA damage checkpoint and cell cycle control in somatic cells. According to recent findings, the involvement of Chk1 in oocyte meiotic resumption and Chk2 is regarded as an essential regulator for progression at the post metaphase I stage (MI). In this study, AZD7762 (Chk1/2 inhibitor) and SB218078 (Chk1 inhibitor) were used to uncover the joint roles of Chk1/2 and differentiate the importance of Chk1 and Chk2 during oocyte meiotic maturation. Inhibition of Chk1/2 or Chk1 alone had no significant effect on germinal vesicle breakdown (GVBD) but significantly inhibited the first polar body (PB1). Interestingly, inhibition of Chk1 alone could not increase or completely block the extrusion of PB1 like Chk1/2 inhibition. Also, Chk1/2 inhibition resulted in defective meiotic spindle organization and chromosome condensation both in MI and metaphase II (MII) stages of oocytes. The location of γ-tubulin and Securin were abnormal or missing, while P38 MAPK was activated by Chk1/2 inhibition. Meanwhile, Chk1/2 inhibition reduced the percentage of the second polar body extrusion and pronuclear formation. In conclusion, our results further understand the functions and regulatory mechanism of Chk1/2 during oocyte meiotic maturation.


Assuntos
Cromossomos/metabolismo , Meiose/fisiologia , Metáfase/fisiologia , Oócitos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Camundongos , Securina/metabolismo , Tubulina (Proteína)/metabolismo
10.
J Cell Mol Med ; 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037315

RESUMO

Oocyte ageing is a key bottleneck and intractable challenge for in vitro fertilization treatment of aged female patients. The underlying molecular mechanisms of human oocyte ageing remain to be elucidated. Hence, this study aims to investigate the key genes and relevant biological signalling pathways involved in human oocyte ageing. We isolated mRNA for single-cell RNA sequencing from MII human oocytes donated by patients undergoing intracytoplasmic sperm injection. Nine RNA-seq datasets were analyzed, which included 6 older patients(average 42.67±2.25 years) and 3 younger patients (average 25.67±2.08 years). 481 differentially expressed genes (DEGs) were identified, including 322 upregulated genes enriched in transcription, ubiquitination, epigenetic regulation, and cellular processes, and 159 downregulated genes enriched in ubiquitination, cell cycle, signalling pathway, and DNA repair. The STRING database was used to analyse protein-protein interactions, and the Cytoscape software was used to identify hub genes. From these DEGs, 17 hub genes were identified including 12 upregulated genes (UBE2C, UBC, CDC34, UBR1, KIF11, ASF1B, PRC1, ESPL1, GTSE1, EXO1, UBA1, KIF4A) and 5 downregulated genes (UBA52, UBE2V2, SKP1, CCNB1, MAD2L1). The significant key biological processes that are associated with these hub genes include ubiquitin-mediated proteolysis, ubiquitination-related pathways, oocyte meiosis, and cell cycle. Among these, UBE2C may play a crucial role in human oocyte ageing.

11.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031239

RESUMO

C-natriuretic peptide (CNP) and its receptor guanylyl cyclase, natriuretic peptide receptor 2 (NPR2), are key regulators of cyclic guanosine monophosphate (cGMP) homeostasis. The CNP-NPR2-cGMP signaling cascade plays an important role in the progression of oocyte meiosis, which is essential for fertility in female mammals. In preovulatory ovarian follicles, the luteinizing hormone (LH)-induced decrease in CNP and its encoding messenger RNA (mRNA) natriuretic peptide precursor C (Nppc) are a prerequisite for oocyte meiotic resumption. However, it has never been determined how LH decreases CNP/Nppc In the present study, we identified that tristetraprolin (TTP), also known as zinc finger protein 36 (ZFP36), a ubiquitously expressed mRNA-destabilizing protein, is the critical mechanism that underlies the LH-induced decrease in Nppc mRNA. Zfp36 mRNA was transiently up-regulated in mural granulosa cells (MGCs) in response to the LH surge. Loss- and gain-of-function analyses indicated that TTP is required for Nppc mRNA degradation in preovulatory MGCs by targeting the rare noncanonical AU-rich element harbored in the Nppc 3' UTR. Moreover, MGC-specific knockout of Zfp36, as well as lentivirus-mediated knockdown in vivo, impaired the LH/hCG-induced Nppc mRNA decline and oocyte meiotic resumption. Furthermore, we found that LH/hCG activates Zfp36/TTP expression through the EGFR-ERK1/2-dependent pathway. Our findings reveal a functional role of TTP-induced mRNA degradation, a global posttranscriptional regulation mechanism, in orchestrating the progression of oocyte meiosis. We also provided a mechanism for understanding CNP-dependent cGMP homeostasis in diverse cellular processes.


Assuntos
Meiose , Peptídeo Natriurético Tipo C/biossíntese , Folículo Ovariano/metabolismo , Ovulação , Estabilidade de RNA , RNA Mensageiro/metabolismo , Tristetraprolina/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Peptídeo Natriurético Tipo C/genética , RNA Mensageiro/genética , Tristetraprolina/genética
12.
Reprod Biol Endocrinol ; 19(1): 50, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794912

RESUMO

BACKGROUND: Anticentromere antibody (ACA) is a member of the antinuclear antibody (ANA) family, and recent studies have found that ACA may be associated with oocyte maturation disorders; however, the possible mechanism behind this phenomenon remains unknown. We conducted this study to investigate whether ACA could penetrate into the living oocytes and interfere with oocyte meiosis in a mouse model. METHODS: We divided mice into three groups: human recombinant centromere protein-A (human CENP-A, HA) and complete Freund's adjuvant (CFA) were used to immunize mice for the study group (HA + CFA), and mice injected with CFA (CFA group) or saline (Saline group), respectively, served as controls. After immunization, serum anti-CENP-A antibody was detected by indirect immunofluorescence assay (IIFT) and enzyme-linked immunosorbent assay (ELISA). Chromosome alignment and intracellular IgG localization in MI- and MII-stage oocytes were investigated by immunofluorescence analysis. RESULTS: Positive ACAs were successfully induced by immunization with CENP-A and CFA, and results showed that the serum level of anti-CENP-A antibody was significantly higher in the HA + CFA group compared with the control groups. There was marked increase of chromosome misalignments in MI and MII oocytes in the HA + CFA group compared to the control groups. However, no oocytes from any of the three groups showed intracellular antibody immunofluorescence. CONCLUSIONS: The development and maturation of oocytes were impaired in peripheral ACA positive mice, which exhibited severe chromosomal misalignments in metaphase meiosis; however, no evidence of ACAs entering the oocytes was observed, thus the underlying mechanism needs further exploration.


Assuntos
Anticorpos Antinucleares/imunologia , Proteína Centromérica A/imunologia , Adjuvante de Freund/imunologia , Imunização/efeitos adversos , Meiose/imunologia , Oócitos/imunologia , Animais , Anticorpos Antinucleares/biossíntese , Células Cultivadas , Proteína Centromérica A/administração & dosagem , Feminino , Adjuvante de Freund/administração & dosagem , Imunização/métodos , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Oogênese/fisiologia
13.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119044, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33865884

RESUMO

Cyclin D-CDK4/6 complex mediates the transition from the G1 to S phase in mammalian somatic cells. Meiotic oocytes pass through the G2/M transition and complete the first meiosis to reach maturation at the metaphase of meiosis II without intervening S phase, while Cyclin D-CDK4/6 complex is found to express during meiotic progression. Whether Cyclin D-CDK4/6 complex regulates meiotic cell cycle progression is not known. Here, we found its different role in oocyte meiosis: Cyclin D-CDK4/6 complex served as a regulator of spindle assembly checkpoint (SAC) to prevent aneuploidy in meiosis I. Inhibition of CDK4/6 kinases disrupted spindle assembly, chromosome alignment and kinetochore-microtubule attachments, but unexpectedly accelerated meiotic progression by inactivating SAC, consequently resulting in production of aneuploid oocytes. Further studies showed that the MPF activity decrease before first polar body extrusion was accelerated probably by inactivation of the SAC to promote ubiquitin-mediated cyclin B1 degradation. Taken together, these data reveal a novel role of Cyclin D-CDK4/6 complex in mediating control of the SAC in female meiosis I.


Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Aneuploidia , Animais , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Ciclina B1/metabolismo , Feminino , Meiose/fisiologia , Mesotelina , Metáfase/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Oócitos/metabolismo , Corpos Polares/metabolismo , Fuso Acromático/metabolismo
14.
Front Endocrinol (Lausanne) ; 12: 802768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975771

RESUMO

Red pigment concentrating hormone (RPCH) and pigment dispersing hormone (PDH) are crustacean neuropeptides involved in broad physiological processes including body color changes, circadian rhythm, and ovarian growth. In this study, the full-length cDNA of RPCH and PDH were identified from the brain of the Chinese mitten crab Eriocheir sinensis. The deduced RPCH and PDH mature peptides shared identical sequence to the adipokinetic hormone/RPCH peptides family and the ß-PDH isoforms and were designated as Es-RPCH and Es-ß-PDH, respectively. Es-RPCH and Es-ß-PDH transcripts were distributed in the brain and eyestalks. The positive signals of Es-RPCH and Es-ß-PDH were localized in the neuronal clusters 6, 8, 9, 10, and 17 of the brain as revealed by in situ hybridization. The expression level of Es-RPCH and Es-ß-PDH mRNA in nervous tissues were all significantly increased at vitellogenic stage, and then decreased at the final meiotic maturation stage. The administrated with synthesized Es-RPCH peptide results in germinal vesicles shift toward the plasma membrane in vitellogenic oocyte, and significant decrease of the gonad-somatic index (GSI) and mean oocyte diameter as well as the expression of vitellogenin mRNA at 30 days post injection in vivo. Similar results were also found when injection of the Es-ß-PDH peptide. In vitro culture demonstrated that Es-RPCH and Es-ß-PDH induced germinal vesicle breakdown of the late vitellogenic oocytes. Comparative ovarian transcriptome analysis indicated that some reproduction/meiosis-related genes such as cdc2 kinase, cyclin B, 5-HT-R and retinoid-X receptor were significantly upregulated in response to Es-RPCH and Es-ß-PDH treatments. Taken together, these results provided the evidence for the inductive effect of Es-RPCH and Es-ß-PDH on the oocyte meiotic maturation in E. sinensis.


Assuntos
Braquiúros/fisiologia , Meiose/fisiologia , Oligopeptídeos/fisiologia , Oócitos/fisiologia , Peptídeos/fisiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Química Encefálica , China , DNA Complementar/análise , Feminino , Expressão Gênica , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oócitos/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Peptídeos/genética , Peptídeos/farmacologia , Ácido Pirrolidonocarboxílico/farmacologia , RNA Mensageiro/análise , Vitelogênese
15.
FEBS J ; 287(23): 5130-5147, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32562308

RESUMO

In contrast to the homeokinesis of mitosis, asymmetric division of cytoplasm is the conspicuous feature of meiosis in mammalian oocytes. Protein regulator of cytokinesis 1 (PRC1) is an important regulator during mitotic spindle assembly and cytoplasmic division, but its functions in oocyte meiosis and early embryo development have not been fully elucidated. In this study, we detected PRC1 expression and localization and revealed a nuclear, spindle midzone-related dynamic pattern throughout meiotic and mitotic progressions. Treatment of oocytes with the reagents taxol or nocodazole disturbed the distribution of PRC1 in metaphase II oocytes. Further, PRC1 depletion led to failure of first polar body (PB1) extrusion and spindle migration, aneuploidy and defective kinetochore-microtubule attachment and spindle assembly. Overexpression of PRC1 resulted in PB1 extrusion failure, aneuploidy and serious defects of spindle assembly. To investigate PRC1 function in early embryos, we injected Prc1 morpholino into zygotes and 2-cell stage embryos. Depletion of PRC1 in zygotes impaired 4-cell, morula and blastocyst formation. Loss of PRC1 in single or double blastomeres in 2-cell stage embryos significantly impaired cell division, indicating its indispensable role in early embryo development. Co-immunoprecipitation showed that PRC1 interacts with polo-like kinase 1 (PLK1), and functional knockdown and rescue experiments demonstrated that PRC1 recruits PLK1 to the spindle midzone to regulate cytoplasmic division during meiosis. Finally, kinesin family member 4 knockdown downregulates PRC1 expression and leads to PRC1 localization failure. Taken together, our data suggest PRC1 plays an important role during oocyte maturation and early embryonic development by regulating chromosome dynamics and cytoplasmic division.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos , Citoplasma/fisiologia , Desenvolvimento Embrionário , Meiose , Oócitos/fisiologia , Fuso Acromático/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Feminino , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oócitos/citologia , Oogênese , Gravidez , Espermatozoides/citologia , Espermatozoides/fisiologia , Zigoto/citologia , Zigoto/fisiologia
16.
Biol Open ; 9(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32493729

RESUMO

How oocytes assemble bipolar meiotic spindles in the absence of centrosomes as microtubule organizing centers remains poorly understood. We have used live cell imaging in Caenorhabditis elegans to investigate requirements for the nuclear lamina and for conserved regulators of microtubule dynamics during oocyte meiosis I spindle assembly, assessing these requirements with respect to recently identified spindle assembly steps. We show that the nuclear lamina is required for microtubule bundles to form a peripheral cage-like structure that appears shortly after oocyte nuclear envelope breakdown and surrounds the oocyte chromosomes, although bipolar spindles still assembled in its absence. Although two conserved regulators of microtubule nucleation, RAN-1 and γ-tubulin, are not required for bipolar spindle assembly, both contribute to normal levels of spindle-associated microtubules and spindle assembly dynamics. Finally, the XMAP215 ortholog ZYG-9 and the nearly identical minus-end directed kinesins KLP-15/16 are required for proper assembly of the early cage-like structure of microtubule bundles, and for early spindle pole foci to coalesce into a bipolar structure. Our results provide a framework for assigning molecular mechanisms to recently described steps in C. elegans oocyte meiosis I spindle assembly.


Assuntos
Caenorhabditis elegans/fisiologia , Meiose , Microtúbulos/metabolismo , Oócitos/fisiologia , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Imunofluorescência , Técnicas de Silenciamento de Genes , Centro Organizador dos Microtúbulos , Proteína ran de Ligação ao GTP
17.
Biochem Biophys Res Commun ; 527(4): 1043-1049, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439172

RESUMO

During oocyte meiosis, mitochondria usually surround spindle to meet the energy demand of spindle migration and chromosome segregation. Therefore, the mitochondrion surrounding spindle is widely accepted as an important indicator to demonstrate the mitochondrial function in oocyte studies. However, the role of mitochondria surrounding spindle in oocyte quality is not exactly addressed. Mitofusin-2 (MFN2) is a mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Here, we increased the mitochondria surrounding spindle by overexpression of MFN2 in mouse oocytes. Results indicate that the increase of mitochondria surrounding spindle has little effect on germinal vesicle breakdown (GVBD), spindle migration, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production and Endoplasmic reticulum (ER) distribution, while blocks chromosome segregation, destroys the spindle, and finally causes most of the oocytes to arrest at metaphase I stage. Collectively, our results demonstrate the mitochondria surrounding spindle is precisely regulated during oocyte maturation, while too much of it may cause abnormal oocyte meiosis. Therefore, although mitochondrion surrounding spindle is a typical biological event during oocyte maturation, utilizing it to demonstrate the mitochondrial function and oocyte quality should be much careful.


Assuntos
Metáfase , Mitocôndrias/metabolismo , Oócitos/citologia , Fuso Acromático/metabolismo , Animais , Células Cultivadas , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/genética , Oócitos/metabolismo , Oogênese , Espécies Reativas de Oxigênio/metabolismo , Fuso Acromático/genética , Regulação para Cima
18.
J Exp Zool B Mol Dev Evol ; 334(4): 245-256, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297418

RESUMO

Histone modifications play important roles in regulating chromatin dynamic changes. In this study, acetylated histone H3 lysine 9 and 18 (H3K9ac and H3K18ac), acetylated histone H4 lysine 5 and 8 (H4K5ac and H4K8ac), tri-methylation histone H3 lysine 4 (H3K4me3), di-methylation histone H3 lysine 9 (H3K9me2) are investigated in bovine oocytes, zygote, and preimplantation. During meiosis, H3K9ac and H3K18ac are erased after germinal vesicle breakdown, H4K8ac is erased after metaphase I (MI). Although H4K5ac is erased at MI, it is redetectable after this stage. However, histone methylations have no significant change during meiosis. During fertilization, intensive H4K5ac and H4K8ac are resumed on male and female chromatins at postfertilization 4 and 8 hr, respectively. H3K9ac and H3K18ac are resumed on both male and female chromatins at postfertilization 8 and 12 hr, respectively. H3K4me3 and H3K9me2 gradually increased on male chromatin after postfertilization 8 hr, while these two signals on female chromatin are detectable from postfertilization 2-18 hr. During embryo cleavage, H3K9ac, H3K18ac, and H3K4me3 are reduced at 8-cell stage, and then start to increase. H4K5ac, H4K8ac, and H3K9me2 increase after the 4-cell stage. At interphase, H4K5ac and H4K8ac are more intensive in nuclear periphery from 2- to 8-cell stages. During mitosis, the signal of H4K8ac is intensive at chromosome periphery. In summary, during both oocyte meiosis and fertilization, the dynamic changes of both histone acetylations and methylations happen in a process of lysine residue-specific and species-specific. During preimplantation development, the dynamic patterns of both H3K9ac and H3K18ac are similar to that of H3K4me3, while the dynamic pattern of H4K5ac is similar to that of H4K8ac. These results will be helpful for understanding the effect of histone posttranslational modifications on bovine reproduction and development.


Assuntos
Blastocisto/metabolismo , Bovinos/embriologia , Histonas/metabolismo , Oócitos/metabolismo , Zigoto/metabolismo , Acetilação , Animais , Fertilização , Humanos , Metilação
19.
J Cell Physiol ; 235(10): 7030-7042, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32017059

RESUMO

Histone deacetylase 6 (HDAC6) participates in mouse oocyte maturation by deacetylating α-tubulin. However, how HDAC6 expression is regulated in oocytes remains unknown. In the present study, we discovered that mouse oocytes had a high level of HDAC6 expression and a low level of DNA methylation status in their promoter region. Then, a selective HDAC6 inhibitor, tubastatin A (Tub-A) was chosen to investigate the role of HDAC6 in oocyte maturation. Our results revealed that inhibition of HDAC6 caused meiotic progression arrest, disturbed spindle/chromosome organization, and kinetochore-microtubule attachments without impairing spindle assembly checkpoint function. Moreover, inhibition of HDAC6 not only increased the acetylation of α-tubulin but also elevated the acetylation status of H4K16 and decreased the phosphorylation level of H3T3 and H3S10. Conversely, depressed H3T3 phosphorylation by its kinase inhibitor increased the acetylation level of H4K16. Finally, single cell RNA-seq analysis revealed that the cell cycle-related genes CCNB1, CDK2, SMAD3, YWHAZ and the methylation-related genes DNMT1 and DNMT3B were strongly repressed in Tub-A treated oocytes. Taken together, our results indicate that HDAC6 plays important roles in chromosome condensation and kinetochore function via regulating several key histone modifications and messenger RNA transcription during oocyte meiosis.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , RNA Mensageiro/metabolismo , Acetilação/efeitos dos fármacos , Animais , Segregação de Cromossomos/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Oócitos/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
20.
Cells ; 9(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046180

RESUMO

Meiosis is required to reduce to haploid the diploid genome content of a cell, generating gametes-oocytes and sperm-with the correct number of chromosomes. To achieve this goal, two specialized cell divisions without intermediate S-phase are executed in a time-controlled manner. In mammalian female meiosis, these divisions are error-prone. Human oocytes have an exceptionally high error rate that further increases with age, with significant consequences for human fertility. To understand why errors in chromosome segregation occur at such high rates in oocytes, it is essential to understand the molecular players at work controlling these divisions. In this review, we look at the interplay of kinase and phosphatase activities at the transition from metaphase-to-anaphase for correct segregation of chromosomes. We focus on the activity of PP2A-B56, a key phosphatase for anaphase onset in both mitosis and meiosis. We start by introducing multiple roles PP2A-B56 occupies for progression through mitosis, before laying out whether or not the same principles may apply to the first meiotic division in oocytes, and describing the known meiosis-specific roles of PP2A-B56 and discrepancies with mitotic cell cycle regulation.


Assuntos
Meiose , Oócitos/citologia , Oócitos/enzimologia , Proteína Fosfatase 2/metabolismo , Animais , Cinetocoros/metabolismo , Camundongos , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA