Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Food Res Int ; 169: 112839, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254414

RESUMO

Carotenoid-derived volatiles are important contributors to tea aroma quality. However, the profile of the carotenoid pathway and carotenoid-derived volatiles (CDVs) artificial regulation in oolong tea processing has yet to be investigated. In the present work, the content and varieties of carotenoid-derived volatiles, the genome-wide identification of carotenoid cleavage dioxygenase (CsCCD) gene family, the expression level of CsCCD and other key genes in the carotenoid pathway, and the profile of carotenoid substances were analyzed by multi-omics and bioinformatics methods with innovative postharvest supplementary LED light during oolong tea processing. The results showed that during oolong tea processing, a total of 17 CDVs were identified. The content of ß-ionone increased up to 26.07 times that of fresh leaves and its formation was significantly promoted with supplementary LED light from 0.54 µg/g to 0.83 µg/g in the third turning over treatment. A total of 11 CsCCD gene family members were identified and 119 light response cis-acting regulatory elements of CsCCD were found. However, the expression level of most genes in the carotenoid pathway including CsCCD were reduced due to mechanical stress. 'Huangdan' fresh tea leaves had a total of 1 430.46 µg/g 22 varieties of carotenoids, which mainly composed of lutein(78.10%), ß-carotene(8.24%) and zeaxanthin(8.18%). With supplementary LED light, the content of antherxanthin and zeaxanthin in xanthophyll cycle was regulated and CDVs such as α-ionone, ß-ionone, pseudoionone, damascenone, 6,10-dimethyl-5,9-undecadien-2-one, citral, geranyl acetate and α-farnesene were promoted significantly in different phases during oolong tea processing. Our results revealed the profile of the carotenoid metabolism pathway in oolong tea processing from the perspective of precursors, gene expression and products, and put forward an innovative way to improve CDVs by postharvest supplementary LED light.


Assuntos
Carotenoides , Redes e Vias Metabólicas , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Chá
2.
Foods ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231828

RESUMO

Catechins are the major flavor substances in teas, which have a variety of health effects; however, high catechin and high sensory quality are a pair of contradictions that are difficult to coordinate. To explore the processing procedure with high catechins and high sensory quality, a single-factor processing experiment was carried out over the processing production of oolong tea. Combined with orthogonal partial least square discriminant analysis (OPLS-DA), correlation analysis, and principal component analysis (PCA), the optimal production procedure for oolong tea is as follows: red light withering for 8 h, leaf rotating for 10 min with a total standing time for 8 h, drum roasting for 5 min at 290 °C, low-temperature rolling (flattening at 4 °C for 5 min, without pressure for 1 min and under pressure for 5 min), microwave drying (800 W for 7.5 min). This study demonstrates a significant increase in the retention of catechins, which contributes to the mellow and brisk tastes of oolong tea, addressing the challenge of catechin content and sensory quality. Our study provides a novel insight into the relationship between the oolong tea processing and flavor formation.

3.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 359-373, 2022 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-35142142

RESUMO

Carotenoid cleavage dioxygenase (CCD) family is important for production of volatile aromatic compounds and synthesis of plant hormones. To explore the biological functions and gene expression patterns of CsCCD gene family in tea plant, genome-wide identification of CsCCD gene family was performed. The gene structures, conserved motifs, chromosome locations, protein physicochemical properties, evolutionary characteristics, interaction network and cis-acting regulatory elements were predicted and analyzed. Real time-quantitative reverse transcription PCR (RT-qPCR) was used to detect the relative expression level of CsCCD gene family members under different leaf positions and light treatments during processing. A total of 11 CsCCD gene family members, each containing exons ranging from 1 to 11 and introns ranging from 0 to 10, were identified. The average number of amino acids and molecular weight were 519 aa and 57 643.35 Da, respectively. Phylogenetic analysis showed the CsCCD gene family was clustered into 5 major groups (CCD1, CCD4, CCD7, CCD8 and NCED). The CsCCD gene family mainly contained stress response elements, hormone response elements, light response elements and multi-factor response elements, and light response elements was the most abundant (142 elements). Expression analysis showed that the expression levels of CsCCD1 and CsCCD4 in elder leaves were higher than those in younger leaves and stems. With the increase of turning over times, the expression levels of CsCCD1 and CsCCD4 decreased, while supplementary LED light strongly promoted their expression levels in the early stage. The expression level of NCED in younger leaves was higher than that in elder leaves and stems on average, and the expression trend varied in the process of turning over. NCED3 first increased and then decreased, with an expression level 15 times higher than that in fresh leaves. In the late stage of turning over, supplementary LED light significantly promoted its gene expression. In conclusion, CsCCD gene family member expressions were regulated by mechanical force and light. These understandings may help to optimize tea processing techniques and improve tea quality.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá
4.
Chinese Journal of Biotechnology ; (12): 359-373, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927716

RESUMO

Carotenoid cleavage dioxygenase (CCD) family is important for production of volatile aromatic compounds and synthesis of plant hormones. To explore the biological functions and gene expression patterns of CsCCD gene family in tea plant, genome-wide identification of CsCCD gene family was performed. The gene structures, conserved motifs, chromosome locations, protein physicochemical properties, evolutionary characteristics, interaction network and cis-acting regulatory elements were predicted and analyzed. Real time-quantitative reverse transcription PCR (RT-qPCR) was used to detect the relative expression level of CsCCD gene family members under different leaf positions and light treatments during processing. A total of 11 CsCCD gene family members, each containing exons ranging from 1 to 11 and introns ranging from 0 to 10, were identified. The average number of amino acids and molecular weight were 519 aa and 57 643.35 Da, respectively. Phylogenetic analysis showed the CsCCD gene family was clustered into 5 major groups (CCD1, CCD4, CCD7, CCD8 and NCED). The CsCCD gene family mainly contained stress response elements, hormone response elements, light response elements and multi-factor response elements, and light response elements was the most abundant (142 elements). Expression analysis showed that the expression levels of CsCCD1 and CsCCD4 in elder leaves were higher than those in younger leaves and stems. With the increase of turning over times, the expression levels of CsCCD1 and CsCCD4 decreased, while supplementary LED light strongly promoted their expression levels in the early stage. The expression level of NCED in younger leaves was higher than that in elder leaves and stems on average, and the expression trend varied in the process of turning over. NCED3 first increased and then decreased, with an expression level 15 times higher than that in fresh leaves. In the late stage of turning over, supplementary LED light significantly promoted its gene expression. In conclusion, CsCCD gene family member expressions were regulated by mechanical force and light. These understandings may help to optimize tea processing techniques and improve tea quality.


Assuntos
Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...