Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.564
Filtrar
1.
J Biomed Opt ; 29(Suppl 2): S22702, 2025 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38434231

RESUMO

Significance: Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim: This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach: Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion: Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.


Assuntos
Técnicas Histológicas , Microscopia , Animais , Citometria de Fluxo , Processamento de Imagem Assistida por Computador
2.
Leukos ; 20(4): 380-389, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39021508

RESUMO

Light exposure fundamentally influences human physiology and behavior, with light being the most important zeitgeber of the circadian system. Throughout the day, people are exposed to various scenes differing in light level, spectral composition and spatio-temporal properties. Personalized light exposure can be measured through wearable light loggers and dosimeters, including wrist-worn actimeters containing light sensors, yielding time series of an individual's light exposure. There is growing interest in relating light exposure patterns to health outcomes, requiring analytic techniques to summarize light exposure properties. Building on the previously published Python-based pyActigraphy module, here we introduce the module pyLight. This module allows users to extract light exposure data recordings from a wide range of devices. It also includes software tools to clean and filter the data, and to compute common metrics for quantifying and visualizing light exposure data. For this tutorial, we demonstrate the use of pyLight in one example dataset with the following processing steps: (1) loading, accessing and visual inspection of a publicly available dataset, (2) truncation, masking, filtering and binarization of the dataset, (3) calculation of summary metrics, including time above threshold (TAT) and mean light timing above threshold (MLiT). The pyLight module paves the way for open-source, large-scale automated analyses of light-exposure data.

3.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39025674

RESUMO

Quantifying and analyzing licking behavior can offer valuable insights into fundamental neurobiological mechanisms controlling animal consummatory behaviors. Lickometers are typically based on electrical properties, a strategy that comes with limitations, including susceptibility to electrical interference and generation of electrical disturbances in electrophysiological measurements. While optical lickometers offer an alternative method to measure licks and quantify fluid intake in animals, they are prone to false readings and susceptibility to outside light sources. To overcome this problem, we propose a low-cost open-source lickometer that combines a restricted infrared beam defined by optical fibers, with a poke design that allows easy access to the tongue while limiting access of other body parts and external light sources. This device also includes features for detecting nose pokes and presenting visual cues during behavioral tasks. We provide validation experiments that demonstrate the optical lickometer's reliability, high-sensitivity and precision, and its application in a behavioral task, showcasing the potential of this tool to study lick microstructure in combination with other techniques, such as imaging of neural activity, in freely moving mice.


Assuntos
Fibras Ópticas , Animais , Camundongos , Comportamento de Ingestão de Líquido/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Reprodutibilidade dos Testes , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Tecnologia de Fibra Óptica/instrumentação
4.
J Neurosci Methods ; : 110221, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053773

RESUMO

BACKGROUND: Proper hydration is essential for maintaining health and supports various biological processes, including temperature regulation, immune function, nutrient delivery, and organ function. Visual assessment has traditionally been used to quantify liquid intake, although technological advances in optical and electrical sensors now offer higher accuracy and larger potential for automatic operation with millisecond precision and individual lick resolution. New Method We describe an inexpensive electronic sensor board to monitor mouse licking behavior. The system is equipped with integrated filtering and data preprocessing steps. It measures lick count, frequency, width and interlick intervals with high resolution, allowing the real-time monitoring of complex licking patterns in several mice in their respective home cages over prolonged periods. RESULTS: Our lickometer provides two-millisecond resolution, efficiently detecting variations in licking behaviors in mice. The system is adapted to monitor licking behaviors in up to 12 mice simultaneously. Lick count, duration and interlick intervals, along with preference for sweet water were monitored over two days, revealing variations in licking patterns across light and dark phases extended over prolonged periods. COMPARISON WITH EXISTING METHODS: Our lickometer allows for monitoring licking behaviors and dynamics. It can be adapted to conventional mouse cages using electrical circuits. It is open-source, cost-effective, efficient, and can be utilized in real-time for large cohorts, representing an ideal tool for studying ingestive dynamics in different environmental and pathological contexts. CONCLUSION: We have developed a novel, cost-effective, and efficient device to monitor ingestive behaviors in mice. The throughput of our device allows for monitoring several mice simultaneously while it can be applied directly to a conventional mouse cage, simplifying its implementation into pre-existing experimental setups.

5.
FASEB Bioadv ; 6(7): 207-221, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974113

RESUMO

The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 h to 2 min. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.

6.
Biol Methods Protoc ; 9(1): bpae046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993523

RESUMO

Rapid and accessible testing was paramount in the management of the COVID-19 pandemic. Our university established KCL TEST: a SARS-CoV-2 asymptomatic testing programme that enabled sensitive and accessible PCR testing of SARS-CoV-2 RNA in saliva. Here, we describe our learnings and provide our blueprint for launching diagnostic laboratories, particularly in low-resource settings. Between December 2020 and July 2022, we performed 158277 PCRs for our staff, students, and their household contacts, free of charge. Our average turnaround time was 16 h and 37 min from user registration to result delivery. KCL TEST combined open-source automation and in-house non-commercial reagents, which allows for rapid implementation and repurposing. Importantly, our data parallel those of the UK Office for National Statistics, though we detected a lower positive rate and virtually no delta wave. Our observations strongly support regular asymptomatic community testing as an important measure for decreasing outbreaks and providing safe working spaces. Universities can therefore provide agile, resilient, and accurate testing that reflects the infection rate and trend of the general population. Our findings call for the early integration of academic institutions in pandemic preparedness, with capabilities to rapidly deploy highly skilled staff, as well as develop, test, and accommodate efficient low-cost pipelines.

7.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001092

RESUMO

Enclosed public spaces are hotspots for airborne disease transmission. To measure and maintain indoor air quality in terms of airborne transmission, an open source, low cost and distributed array of particulate matter sensors was developed and named Dynamic Aerosol Transport for Indoor Ventilation, or DATIV, system. This system can use multiple particulate matter sensors (PMSs) simultaneously and can be remotely controlled using a Raspberry Pi-based operating system. The data acquisition system can be easily operated using the GUI within any common browser installed on a remote device such as a PC or smartphone with a corresponding IP address. The software architecture and validation measurements are presented together with possible future developments.

8.
Gates Open Res ; 8: 28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035849

RESUMO

The advent of modern tools in agricultural experiments, digital data collection, and high-throughput phenotyping have necessitated field plot labels that are both machine- and human-readable. Such labels are usually made with commercial software, which are often inaccessible to under-funded research programs in developing countries. The availability of free fit-for-purpose label design software to under-funded research programs in developing countries would address one of the main roadblocks to modernizing agricultural research. The goal was to develop a new open-source software with design features well-suited for field trials and other agricultural experiments. We report here qrlabelr, a new software for creating print-ready plot labels that builds on the foundation of an existing open-source program. The qrlabelr software offers more flexibility in the label design steps, guarantees true string fidelity after QR encoding, and provides faster label generation to users. The new software is available as an R package and offers customizable functions for generating plot labels. For non-R users or beginners in R programming, the package provides an interactive Shiny app version that can be launched from R locally or accessed online at https://bit.ly/3Sud4xy. The design philosophy of this new program emphasizes the adoption of best practices in plot label design to enhance reproducibility, tracking, and accurate data curation in agricultural research and development studies.


Assuntos
Agricultura , Software , Agricultura/métodos , Humanos , Interface Usuário-Computador
9.
Comput Methods Programs Biomed ; 255: 108328, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39038390

RESUMO

BACKGROUND AND OBJECTIVES: Patch-Clamp recordings allow for in depth electrophysiological characterization of single cells, their general biophysical properties as well as characteristics of voltage- and ligand-gated ionic currents. Different acquisition modes, such as whole-cell patch-clamp recordings in the current or voltage clamp configuration, capacitance measurements or single channel recordings from cultured cells as well as acute brain slices are routinely performed for these purposes. Nevertheless, multipurpose transparent and adaptable software tools to perform reproducible state-of-the-art analysis of multiple experiment types and to manage larger sets of experimental data are currently unavailable. METHODS: Biophysical Essentials (BPE) was developed as an open-source full stack python software for transparent and reproducible analysis of electrophysiological recordings. For validation, BPE results were compared with manually analyzed single-cell patch-clamp data acquired from a human in vitro nociceptor-model and mouse dorsal root ganglia neurons. RESULTS: While initially designed to improve time consuming and repetitive analysis steps, BPE was further optimized as a technical software solution for entire workflow processing including data acquisition, data preprocessing, normalization and visualization and of single recordings up to stacked calculations and statistics of multiple experiments. BPE can operate with different file formats from different amplifier systems and producers. An in-process database logs all analysis steps reproducible review and serves as a central storage point for recordings. Statistical testing as well as advanced analysis functions like Boltzmann-fitting and dimensional reduction methods further support the researchers' needs in projects involving electrophysiology techniques. CONCLUSIONS: BPE extends beyond available patch-clamp specific, open source - and commercial analysis tools in particular because of reproducible and sharable analysis workflows. BPE enables full analysis from raw data acquisition to publication ready result visualizations - all within one single program. Thereby, BPE significantly enhances transparency in the analytical process of patch-clamp data analysis. BPEs function scope is completely accessible through an easy-to-use graphical user interface eliminating the need for programing language proficiency as required by many community patch-clamp analysis frameworks and algorithms.

10.
J Comp Neurol ; 532(6): e25626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031698

RESUMO

We have examined the number and distribution of NeuN-immunoreactive cortical white matter interstitial cells (WMICs) and compared them to the neurons in layers 1-6 across the overlying cortex in coronal sections from postnatal macaques. The data have been gathered from over 300 selected regions at gyral crowns, at sulci, and at linear regions of the cortex where we also determined cortical layer thicknesses: standard thicknesses and tangential thicknesses. Cortical thicknesses and cell numbers showed variability according to gyral, linear, or sulcal regions. In spite of these variations, our standardized cell numbers in layers 1 to 6b and interstitial cells underlying layer 6b-white matter boundary have shown a consistent correlation between the number of WMICs and the number of layer 5 and 6a cortical neurons on all cortical regions studied: for each WMIC, there are on the order of five cortical neurons in layer 5 and approximately three cortical neurons in layer 6a, irrespective of the origins of the selected cortical area or whether they are from gyral, linear, or sulcal regions. We propose that the number of interstitial neurons in the postnatal macaque cortex is correlated to the density of neurons within layers 5 and 6a and, from a clinical perspective, the change in density or distribution of interstitial neurons in schizophrenia or epilepsy may in fact be linked to the number of layers 5 and 6a neurons.


Assuntos
Córtex Cerebral , Neurônios , Substância Branca , Animais , Neurônios/citologia , Córtex Cerebral/citologia , Substância Branca/citologia , Substância Branca/anatomia & histologia , Contagem de Células , Animais Recém-Nascidos , Macaca mulatta , Masculino , Feminino
11.
Anal Bioanal Chem ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995405

RESUMO

Feature detection plays a crucial role in non-target screening (NTS), requiring careful selection of algorithm parameters to minimize false positive (FP) features. In this study, a stochastic approach was employed to optimize the parameter settings of feature detection algorithms used in processing high-resolution mass spectrometry data. This approach was demonstrated using four open-source algorithms (OpenMS, SAFD, XCMS, and KPIC2) within the patRoon software platform for processing extracts from drinking water samples spiked with 46 per- and polyfluoroalkyl substances (PFAS). The designed method is based on a stochastic strategy involving random sampling from variable space and the use of Pearson correlation to assess the impact of each parameter on the number of detected suspect analytes. Using our approach, the optimized parameters led to improvement in the algorithm performance by increasing suspect hits in case of SAFD and XCMS, and reducing the total number of detected features (i.e., minimizing FP) for OpenMS. These improvements were further validated on three different drinking water samples as test dataset. The optimized parameters resulted in a lower false discovery rate (FDR%) compared to the default parameters, effectively increasing the detection of true positive features. This work also highlights the necessity of algorithm parameter optimization prior to starting the NTS to reduce the complexity of such datasets.

12.
HardwareX ; 19: e00545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39006472

RESUMO

The development of a compact and affordable fluorescence microscope can be a formidable challenge for growing needs in on-site testing and detection of fluorescent labeled biological systems, especially for those who specialize in biology rather than in engineering. In response to such a situation, we present an open-source miniature fluorescence microscope using Raspberry Pi. Our fluorescence microscope, with dimensions of 19.2 × 13.6 × 8.2 cm3 (including the display, computer, light-blocking case, and other operational requirements), not only offers cost-effectiveness (costing less than $500) but is also highly customizable to meet specific application needs. The 12.3-megapixel Raspberry Pi HQ Camera captures high-resolution imagery, while the equipped wide-angle lens provides a field of view measuring 21 × 15 mm2. The integrated wireless LAN in the Raspberry Pi, along with software-controllable high-powered fluorescence LEDs, holds potential for a wide range of applications. This open-source fluorescence microscope offers biohybrid sensor developers a versatile tool to streamline unfamiliar mechanical design tasks and open new opportunities for on-site fluorescence detections.

13.
Front Bioeng Biotechnol ; 12: 1433811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007055

RESUMO

Advances in computational fluid dynamics continuously extend the comprehension of aneurysm growth and rupture, intending to assist physicians in devising effective treatment strategies. While most studies have first modelled intracranial aneurysm walls as fully rigid with a focus on understanding blood flow characteristics, some researchers further introduced Fluid-Structure Interaction (FSI) and reported notable haemodynamic alterations for a few aneurysm cases when considering wall compliance. In this work, we explore further this research direction by studying 101 intracranial sidewall aneurysms, emphasizing the differences between rigid and deformable-wall simulations. The proposed dataset along with simulation parameters are shared for the sake of reproducibility. A wide range of haemodynamic patterns has been statistically analyzed with a particular focus on the impact of the wall modelling choice. Notable deviations in flow characteristics and commonly employed risk indicators are reported, particularly with near-dome blood recirculations being significantly impacted by the pulsating dynamics of the walls. This leads to substantial fluctuations in the sac-averaged oscillatory shear index, ranging from -36% to +674% of the standard rigid-wall value. Going a step further, haemodynamics obtained when simulating a flow-diverter stent modelled in conjunction with FSI are showcased for the first time, revealing a 73% increase in systolic sac-average velocity for the compliant-wall setting compared to its rigid counterpart. This last finding demonstrates the decisive impact that FSI modelling can have in predicting treatment outcomes.

14.
PeerJ Comput Sci ; 10: e2066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983240

RESUMO

Data-driven computational analysis is becoming increasingly important in biomedical research, as the amount of data being generated continues to grow. However, the lack of practices of sharing research outputs, such as data, source code and methods, affects transparency and reproducibility of studies, which are critical to the advancement of science. Many published studies are not reproducible due to insufficient documentation, code, and data being shared. We conducted a comprehensive analysis of 453 manuscripts published between 2016-2021 and found that 50.1% of them fail to share the analytical code. Even among those that did disclose their code, a vast majority failed to offer additional research outputs, such as data. Furthermore, only one in ten articles organized their code in a structured and reproducible manner. We discovered a significant association between the presence of code availability statements and increased code availability. Additionally, a greater proportion of studies conducting secondary analyses were inclined to share their code compared to those conducting primary analyses. In light of our findings, we propose raising awareness of code sharing practices and taking immediate steps to enhance code availability to improve reproducibility in biomedical research. By increasing transparency and reproducibility, we can promote scientific rigor, encourage collaboration, and accelerate scientific discoveries. We must prioritize open science practices, including sharing code, data, and other research products, to ensure that biomedical research can be replicated and built upon by others in the scientific community.

15.
Front Robot AI ; 11: 1406645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050485

RESUMO

Educational robots offer a platform for training aspiring engineers and building trust in technology that is envisioned to shape how we work and live. In education, accessibility and modularity are significant in the choice of such a technological platform. In order to foster continuous development of the robots as well as to improve student engagement in the design and fabrication process, safe production methods with low accessibility barriers should be chosen. In this paper, we present Robotont 3, an open-source mobile robot that leverages Fused Deposition Modeling (FDM) 3D-printing for manufacturing the chassis and a single dedicated system board that can be ordered from online printed circuit board (PCB) assembly services. To promote accessibility, the project follows open hardware practices, such as design transparency, permissive licensing, accessibility in manufacturing methods, and comprehensive documentation. Semantic Versioning was incorporated to improve maintainability in development. Compared to the earlier versions, Robotont 3 maintains all the technical capabilities, while featuring an improved hardware setup to enhance the ease of fabrication and assembly, and modularity. The improvements increase the accessibility, scalability and flexibility of the platform in an educational setting.

16.
Ecol Evol ; 14(6): e11341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826171

RESUMO

To address our climate emergency, "we must rapidly, radically reshape society"-Johnson & Wilkinson, All We Can Save. In science, reshaping requires formidable technical (cloud, coding, reproducibility) and cultural shifts (mindsets, hybrid collaboration, inclusion). We are a group of cross-government and academic scientists that are exploring better ways of working and not being too entrenched in our bureaucracies to do better science, support colleagues, and change the culture at our organizations. We share much-needed success stories and action for what we can all do to reshape science as part of the Open Science movement and 2023 Year of Open Science.

17.
Foot (Edinb) ; 60: 102113, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941820

RESUMO

The aim of the current study was to understand the importance of the joint alignment following triple arthrodesis by analysing the contact characteristics in a normal and arthritic ankle joint using a patient-specific numerical model developed using open source software. The alignment of the hindfoot with respect to tibia is calculated from CT scans and the ankle joint model was numerically analysed for neutral, valgus and varus positions in both normal and arthritic conditions. The contact area, the magnitude and distribution of the contact pressure on the articular surface of the talar dome was evaluated using a cell-centred Finite Volume Method implemented in open-source software OpenFOAM. It was found that all positions of the hindfoot predict higher lateral pressures during heel strike. The varus position predicts the maximum increase in lateral pressures. Comparing the valgus and neutral positions, although the neutral position predicts 9.1 % higher increase in lateral pressures during heel strike than valgus, it predicts 33.6 % decrease in pressures during heel-rise and the distribution is more medial during toe-off. In the case of arthritic ankle, it could be observed that the neutral and varus hindfoot fusion positions result in a concentrated increase of lateral pressures in heel strike and flat-foot. In the case of toe-off, the neutral alignment results in an increase of 62.3 % in the contact pressures compared to the arthritic pressure of the unfused foot and is 20.8 % higher than the valgus alignment. The study helps to conclude that the fusion is more beneficial at the neutral position of the hindfoot for the patient specific ankle. However, the 5° valgus position of hindfoot alignment could be more beneficial in the arthritic ankle. Patient-specific approach to the placement of the hindfoot with the help of numerical analysis could help address the issue of ankle degradation following arthrodesis.

18.
Micromachines (Basel) ; 15(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38930678

RESUMO

Laboratory automation effectively increases the throughput in sample analysis, reduces human errors in sample processing, as well as simplifies and accelerates the overall logistics. Automating diagnostic testing workflows in peripheral laboratories and also in near-patient settings -like hospitals, clinics and epidemic control checkpoints- is advantageous for the simultaneous processing of multiple samples to provide rapid results to patients, minimize the possibility of contamination or error during sample handling or transport, and increase efficiency. However, most automation platforms are expensive and are not easily adaptable to new protocols. Here, we address the need for a versatile, easy-to-use, rapid and reliable diagnostic testing workflow by combining open-source modular automation (Opentrons) and automation-compatible molecular biology protocols, easily adaptable to a workflow for infectious diseases diagnosis by detection on paper-based diagnostics. We demonstrated the feasibility of automation of the method with a low-cost Neisseria meningitidis diagnostic test that utilizes magnetic beads for pathogen DNA isolation, isothermal amplification, and detection on a paper-based microarray. In summary, we integrated open-source modular automation with adaptable molecular biology protocols, which was also faster and cheaper to perform in an automated than in a manual way. This enables a versatile diagnostic workflow for infectious diseases and we demonstrated this through a low-cost N. meningitidis test on paper-based microarrays.

19.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931806

RESUMO

The Global Navigation Satellite System (GNSS) software-defined receivers offer greater flexibility, cost-effectiveness, customization, and integration capabilities compared to traditional hardware-based receivers, making them essential for a wide range of applications. The continuous evolution of GNSS research and the availability of new features require these software-defined receivers to upgrade continuously to facilitate the latest requirements. The Finnish Geospatial Research Institute (FGI) has been supporting the GNSS research community with its open-source implementations, such as a MATLAB-based GNSS software-defined receiver `FGI-GSRx' and a Python-based implementation `FGI-OSNMA' for utilizing Galileo's Open Service Navigation Message Authentication (OSNMA). In this context, longer datasets are crucial for GNSS software-defined receivers to support adaptation, optimization, and facilitate testing to investigate and develop future-proof receiver capabilities. In this paper, we present an updated version of FGI-GSRx, namely, FGI-GSRx-v2.0.0, which is also available as an open-source resource for the research community. FGI-GSRx-v2.0.0 offers improved performance as compared to its previous version, especially for the execution of long datasets. This is carried out by optimizing the receiver's functionality and offering a newly added parallel processing feature to ensure faster capabilities to process the raw GNSS data. This paper also presents an analysis of some key design aspects of previous and current versions of FGI-GSRx for a better insight into the receiver's functionalities. The results show that FGI-GSRx-v2.0.0 offers about a 40% run time execution improvement over FGI-GSRx-v1.0.0 in the case of the sequential processing mode and about a 59% improvement in the case of the parallel processing mode, with 17 GNSS satellites from GPS and Galileo. In addition, an attempt is made to execute v2.0.0 with MATLAB's own parallel computing toolbox. A detailed performance comparison reveals an improvement of about 43% in execution time over the v2.0.0 parallel processing mode for the same GNSS scenario.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38894604

RESUMO

The release of AlphaFold2 has sparked a rapid expansion in protein model databases. Efficient protein structure retrieval is crucial for the analysis of structure models, while measuring the similarity between structures is the key challenge in structural retrieval. Although existing structure alignment algorithms can address this challenge, they are often time-consuming. Currently, the state-of-the-art approach involves converting protein structures into three-dimensional (3D) Zernike descriptors and assessing similarity using Euclidean distance. However, the methods for computing 3D Zernike descriptors mainly rely on structural surfaces and are predominantly web-based, thus limiting their application in studying custom datasets. To overcome this limitation, we developed FP-Zernike, a user-friendly toolkit for computing different types of Zernike descriptors based on feature points. Users simply need to enter a single line of command to calculate the Zernike descriptors of all structures in customized datasets. FP-Zernike outperforms the leading method in terms of retrieval accuracy and binary classification accuracy across diverse benchmark datasets. In addition, we showed the application of FP-Zernike in the construction of the descriptor database and the protocol used for the Protein Data Bank (PDB) dataset to facilitate the local deployment of this tool for interested readers. Our demonstration contained 590,685 structures, and at this scale, our system required only 4-9 s to complete a retrieval. The experiments confirmed that it achieved the state-of-the-art accuracy level. FP-Zernike is an open-source toolkit, with the source code and related data accessible at https://ngdc.cncb.ac.cn/biocode/tools/BT007365/releases/0.1, as well as through a webserver at http://www.structbioinfo.cn/.


Assuntos
Bases de Dados de Proteínas , Software , Algoritmos , Conformação Proteica , Proteínas/química , Proteínas/genética , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...