RESUMO
We discuss novel many-fermions thermodynamics' features. They refer to the energy cost associated to order-disorder changes. Our thermal quantum statistical scenario is controlled by suitable fermion-fermion interactions. We deal with two well-known quantum interactions that operate within an exactly solvable model. This model is able to adequately describe some aspects of fermion-dynamics, particularly level-crossings. We describe things via employment of Gibbs' canonical ensemble strictures. We show that judicious manipulation of the energy cost associated to statistical order (disorder) variations generates useful information-quantifiers. The underlying idea is that changes in the degree of order are intimately linked to level-crossings energetic costs.
RESUMO
The cocrystal hexamethylenetetramine-tridecanedioic acid (1/1) (HMT-C13), C6H12N4·C13H24O4, was investigated by single-crystal X-ray diffraction techniques at several temperatures during cooling and heating processes. Our results show the formation of two crystalline phases, separated by a large temperature phase co-existence between 290 and 340â K. Phase I, stable above 341â K, presents an orthorhombic structure described in the space group Bmmb, with one N4(CH2)6·C13H22O4 adduct in its asymmetric unit. Phase II, stable below 290â K, presents a monoclinic symmetry described by the space group P21/c, with two N4(CH2)6·C13H22O4 adducts in its asymmetric unit. The phase co-existence is observed both upon cooling and heating, and seems to be related to a complex domain-growth dynamic within the crystal.
RESUMO
We review thermal-statistical considerations on the odd-even staggering effect (OES) in fermions. There is a well known OES in nuclear binding energies at zero temperature. We discuss here a thermal OES (finite temperatures) that establishes links with the order-disorder disjunction. The present thermal considerations cannot be found in the nuclear literature.
RESUMO
In this work, the effect of the addition of noble metals on the order-order disorder process of the L12 structure corresponding to the intermetallic Ni3Al is analyzed. Stoichiometric, nonstoichiometric, and quasi-binary compositions doped with noble metals such as Ag, Au, Pd, and Pt (1 at%) were analyzed. It was observed that depending on the composition, there is a modification in the activation energies calculated from the two time constants that characterize the disorder process. The statistic of atomic jumps was typified based on the configuration of the window to be crossed and, with this, it was identified that the origin of the negative activation energy of the long disorder process is due to an increase in the corresponding energy of the AlAl-Ni jump through unnatural windows.
RESUMO
Crystals of 4'-(isoquinolin-4-yl)-4,2':6',4''-terpyridine (iqtp), C24H16N4, grown from an ethanol solution, undergo a reversible first-order single-crystal to single-crystal phase transition at Tc in the range 273-275 K, from a disordered higher-temperature phase [form (I)] in the space group P21/c, with one single molecule in the asymmetric unit, to an ordered lower-temperature one [form (II)] in the space group P21/n, with two independent molecules in the asymmetric unit. There is a group-subgroup relationship linking (I)-(II), due to cell doubling and the disappearance of a number of symmetry operations. In addition to X-ray diffraction, the transition has been monitored by Raman spectroscopy and differential scanning calorimetry, the latter disclosing an enthalpy change of 0.72 (6) kJ mol(-1). Variations of the unit-cell parameters with temperature between 170 and 293 K are presented. The evolution of diffraction spots in the vicinity of the transition temperature shows the coexistence of both phases, confirming the first-order character of the transition. Structural details of both phases are analyzed and intermolecular interactions compared in order to investigate the mechanism of the phase transition. A three-dimensional Hirshfeld surface analysis was performed to corroborate the significant changes in the intermolecular features.