Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.515
Filtrar
1.
Front Immunol ; 15: 1424806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983852

RESUMO

Background: The current understanding of the mechanisms by which metal ion metabolism promotes the progression and drug resistance of osteosarcoma remains incomplete. This study aims to elucidate the key roles and mechanisms of genes involved in cuproptosis-related sphingolipid metabolism (cuproptosis-SPGs) in regulating the immune landscape, tumor metastasis, and drug resistance in osteosarcoma cells. Methods: This study employed multi-omics approaches to assess the impact of cuproptosis-SPGs on the prognosis of osteosarcoma patients. Lasso regression analysis was utilized to construct a prognostic model, while multivariate regression analysis was applied to identify key core genes and generate risk coefficients for these genes, thereby calculating a risk score for each osteosarcoma patient. Patients were then stratified into high-risk and low-risk groups based on their risk scores. The ESTIMATE and CIBERSORT algorithms were used to analyze the level of immune cell infiltration within these risk groups to construct the immune landscape. Single-cell analysis was conducted to provide a more precise depiction of the expression patterns of cuproptosis-SPGs among immune cell subtypes. Finally, experiments on osteosarcoma cells were performed to validate the role of the cuproptosis-sphingolipid signaling network in regulating cell migration and apoptosis. Results: In this study, seven cuproptosis-SPGs were identified and used to construct a prognostic model for osteosarcoma patients. In addition to predicting survival, the model also demonstrated reliability in forecasting the response to chemotherapy drugs. The results showed that a high cuproptosis-sphingolipid metabolism score was closely associated with reduced CD8 T cell infiltration and indicated poor prognosis in osteosarcoma patients. Cellular functional assays revealed that cuproptosis-SPGs regulated the LC3B/ERK signaling pathway, thereby triggering cell death and impairing migration capabilities in osteosarcoma cells. Conclusion: The impact of cuproptosis-related sphingolipid metabolism on the survival and migration of osteosarcoma cells, as well as on CD8 T cell infiltration, highlights the potential of targeting copper ion metabolism as a promising strategy for osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Esfingolipídeos , Osteossarcoma/imunologia , Osteossarcoma/genética , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Humanos , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Esfingolipídeos/metabolismo , Prognóstico , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Multiômica
2.
Curr Med Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38994619

RESUMO

INTRODUCTION: Osteosarcoma (OS) drug resistance often leads to a poor prognosis. Recent evidence suggests that long non-coding RNAs play a crucial role in regulating tumor drug resistance. METHOD: This study aims to investigate the involvement of lncRNA LAMTOR5-AS1 in OS. RNA-seq and qRT-PCR were performed, and the relationship between LAMTOR5- AS1, miR-34a-3p, SIRT1, and HNF4A was determined using Dual-luciferase reporter assays and RNA immunoprecipitation assays. Gain- and loss-of-function assays were measured using CCK-8, cell proliferation, and colony formation assays. RESULT: The study found that the dysregulated LAMTOR5-AS1 acts as a competing endogenous RNA (ceRNA) and competitively protects the HNF4A mRNA 3' UTR from miR-34a-3p. In addition, in vitro functional studies showed that HNF4A can physically interact with SIRT1 to synergistically inhibit osteosarcoma drug resistance. The study found that LAMTOR5-AS1 regulates drug resistance in osteosarcoma through the miR-34a-3p/HNF4A or miR-34a-3p/SIRT1/HNF4A axis. CONCLUSION: These findings offer new insights into lncRNA-mediated drug resistance in cancer and may serve as potential biomarkers for cancer therapy.

3.
Microrna ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39005129

RESUMO

Cancer, the second greatest cause of mortality worldwide, frequently causes bone me-tastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord com-pression. These injurious incidents leave uncomfortably large holes in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and ex-hibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various bio-logical processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.

4.
Front Bioeng Biotechnol ; 12: 1418903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007051

RESUMO

Purpose: Osteosarcoma (OS) is the most common type of primary malignant bone tumor. Transducing a functional TP53 gene can effectively inhibit OS cell activity. Poly lactic acid-glycolic acid (PLGA) nanobubbles (NBs) mediated by focused ultrasound (US) can introduce exogenous genes into target cells in animal models, but this technique relies on the passive free diffusion of agents across the body. The inclusion of superparamagnetic iron oxide (SPIO) in microbubbles allows for magnetic-based tissue localization. A low-intensity-focused ultrasound (LIFU) instrument was developed at our institute, and different intensities of LIFU can either disrupt the NBs (RLI-LIFU) or exert cytocidal effects on the target tissues (RHI-LIFU). Based on these data, we performed US-magnetic-mediated TP53-NB destruction and investigated its ability to inhibit OS growth when combined with LIFU both in vitro and in vivo. Methods: Several SPIO/TP53/PLGA (STP) NB variants were prepared and characterized. For the in vitro experiments, HOS and MG63 cells were randomly assigned into five treatment groups. Cell proliferation and the expression of TP53 were detected by CCK8, qRT-PCR and Western blotting, respectively. In vivo, tumor-bearing nude mice were randomly assigned into seven treatment groups. The iron distribution of Perls' Prussian blue-stained tissue sections was determined by optical microscopy. TUNEL-DAPI was performed to examine apoptosis. TP53 expression was detected by qRT-PCR and immunohistochemistry. Results: SPIO/TP53/PLGA NBs with a particle size of approximately 200 nm were prepared successfully. For in vitro experiments, ultrasound-targeted transfection of TP53 overexpression in OS cells and efficient inhibition of OS proliferation have been demonstrated. Furthermore, in a tumor-bearing nude mouse model, RLI-LIFU-magnetic-mediated SPIO/TP53/PLGA NBs increased the transfection efficiency of the TP53 plasmid, resulting in apoptosis. Adding RHI-LIFU to the treatment regimen significantly increased the apoptosis of OS cells in vivo. Conclusion: Combining LIFU and US-magnetic-mediated SPIO/TP53/PLGA NB destruction is potentially a novel noninvasive and targeted therapy for OS.

5.
World J Oncol ; 15(4): 731-735, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38993247

RESUMO

The aggressive nature of lung cancer is frequently accompanied by a high incidence of bone metastasis; however, proximal femoral metastasis from lung cancer is comparatively uncommon when compared to other malignancies. In this report, we present the case of a 53-year-old Asian male who presented with pain in the left thigh and back. Magnetic resonance imaging revealed severe bone destruction with involvement of adjacent soft tissue mass at the left thigh, exhibiting imaging findings that mimic osteosarcoma. Subsequent bone biopsy confirmed the diagnosis of epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma with bone metastasis. The patient achieved survival following administration of osimertinib and underwent surgery for femoral metastases without palliative surgery for lung cancer. Therefore, proximal femoral metastasis from EGFR-mutated lung adenocarcinoma should be considered as a differential diagnosis in patients suspected to have osteosarcoma. The imaging findings of proximal femoral metastasis from EGFR-mutated lung adenocarcinoma were presented, and their therapeutic management was discussed.

6.
Oncol Res ; 32(7): 1163-1172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948019

RESUMO

Background: Osteosarcoma is the most common malignant primary bone tumor. The prognosis for patients with disseminated disease remains very poor despite recent advancements in chemotherapy. Moreover, current treatment regimens bear a significant risk of serious side effects. Thus, there is an unmet clinical need for effective therapies with improved safety profiles. Taurolidine is an antibacterial agent that has been shown to induce cell death in different types of cancer cell lines. Methods: In this study, we examined both the antineoplastic and antiangiogenic effects of taurolidine in animal models of osteosarcoma. K7M2 murine osteosarcoma cells were injected, both intramuscular and intraperitoneal, into 60 BALB/c mice on day zero. Animals were then randomized to receive treatment with taurolidine 2% (800 mg/kg), taurolidine 1% (400 mg/kg), or NaCl 0.9% control for seven days by intravenous or intraperitoneal administration. Results: After 35 days, mice were euthanized, and the tumors were harvested for analysis. Eighteen mice were excluded from the analysis due to complications. Body weight was significantly lower in the 2% taurolidine intraperitoneal treatment group from day 9 to 21, consistent with elevated mortality in this group. Intraperitoneal tumor weight was significantly lower in the 1% (p = 0.003) and 2% (p = 0.006) intraperitoneal taurolidine treatment groups compared to the control. No antineoplastic effects were observed on intramuscular tumors or for intravenous administration of taurolidine. There were no significant differences in microvessel density or mitotic rate between treatment groups. Reduced body weight and elevated mortality in the 2% taurolidine intraperitoneal group suggest that the lower 1% dose is preferable. Conclusions: In conclusion, there is no evidence of antiangiogenic activity, and the antitumor effects of taurolidine on osteosarcoma observed in this study are limited. Moreover, its toxic profile grants further evaluation. Given these observations, further research is necessary to refine the use of taurolidine in osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Modelos Animais de Doenças , Osteossarcoma , Taurina , Tiadiazinas , Carga Tumoral , Animais , Taurina/análogos & derivados , Taurina/farmacologia , Taurina/uso terapêutico , Tiadiazinas/farmacologia , Tiadiazinas/uso terapêutico , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/irrigação sanguínea , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Carga Tumoral/efeitos dos fármacos , Densidade Microvascular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Humanos , Neovascularização Patológica/tratamento farmacológico
7.
J Cell Commun Signal ; 18(2): e12029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946721

RESUMO

Resistance to chemotherapy leads to poor prognosis for osteosarcoma (OS) patients. However, due to the high metastasis of tumor and the decrease in sensitivity of tumor cells to cisplatin (DDP), the 5-year survival rate of OS patients is still unsatisfactory. This study explored a mechanism for improving the sensitivity of OS cells to DDP. A DDP-resistant OS cell model was established, and we have found that circORC2 and TRIM2 were upregulated in DDP-resistant OS cells, but miR-485-3p was downregulated. The cell viability and proliferation of the OS cells decreased gradually with the increase of DDP dose, but a gradual increase in apoptosis was noted. CircORC2 promoted OS cell proliferation and DDP resistance and upregulated TRIM2 expression by targeting miR-485-3p. Functionally, circORC2 downregulated miR-485-3p to promote OS cell proliferation and inhibit DDP sensitivity. Additionally, it promoted cell proliferation and inhibited the sensitivity of DDP by regulating the miR-485-3p/TRIM2 axis. In conclusion, circORC2 promoted cell proliferation and inhibited the DDP sensitivity in OS cells via the miR-485-3p/TRIM2 axis. These findings indicated the role of circORC2 in regulating the sensitivity of OS cells to DDP.

8.
Adv Sci (Weinh) ; : e2403791, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958509

RESUMO

Despite advances in treating osteosarcoma, postoperative tumor recurrence, periprosthetic infection, and critical bone defects remain critical concerns. Herein, the growth of selenium nanoparticles (SeNPs) onto MgFe-LDH nanosheets (LDH) is reported to develop a multifunctional nanocomposite (LDH/Se) and further modification of the nanocomposite on a bioactive glass scaffold (BGS) to obtain a versatile platform (BGS@LDH/Se) for comprehensive postoperative osteosarcoma management. The uniform dispersion of negatively charged SeNPs on the LDH surface restrains toxicity-inducing aggregation and inactivation, thus enhancing superoxide dismutase (SOD) activation and superoxide anion radical (·O2 -)-H2O2 conversion. Meanwhile, Fe3+ within the LDH nanosheets can be reduced to Fe2+ by depleting glutathione (GSH) in the tumor microenvironments (TME), which can catalyze H2O2 into highly toxic reactive oxygen species. More importantly, incorporating SeNPs significantly promotes the anti-bacterial and osteogenic properties of BGS@LDH/Se. Thus, the developed BGS@LDH/Se platform can simultaneously inhibit tumor recurrence and periprosthetic infection as well as promote bone regeneration, thus holding great potential for postoperative "one-stop-shop" management of patients who need osteosarcoma resection and scaffold implantation.

9.
J Med Case Rep ; 18(1): 332, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982521

RESUMO

BACKGROUND: Extraskeletal osteosarcoma is an extremely rare malignancy that accounts for 1% of soft tissue sarcoma and 4.3% of all osteosarcoma. Extraskeletal osteosarcoma can develop in a patient between the ages of 48 and 60 years. The incidence of extraskeletal osteosarcoma is slightly higher in male patients than in females. CASE PRESENTATION: A 50-year-old Caucasian male patient presented with a 6-month history of intermittent lower-left back pain that limits his activity. Prior ultrasonography and abdominal computed tomography scan showed a diagnosis of kidney stone and tumor in the lower-left abdomen. The computed tomography urography with contrast revealed a mass suspected as a left retroperitoneal malignant tumor. Hence, the tumor was resected through laparotomy and the patient continued with histopathological and immunohistochemistry examination with the result of extraskeletal osteosarcoma. CONCLUSION: Extraskeletal osteosarcoma presents diagnostic challenges requiring multimodal examination, including histological and immunohistochemistry analyses. This case underscores the aggressive nature and poor prognosis despite undergoing the current suggested treatment.


Assuntos
Osteossarcoma , Tomografia Computadorizada por Raios X , Humanos , Masculino , Pessoa de Meia-Idade , Osteossarcoma/patologia , Osteossarcoma/diagnóstico , Osteossarcoma/diagnóstico por imagem , Neoplasias Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Neoplasias Renais/diagnóstico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Neoplasias Esplênicas/patologia , Neoplasias Esplênicas/cirurgia , Neoplasias Esplênicas/diagnóstico , Neoplasias Esplênicas/diagnóstico por imagem , Neoplasias Retroperitoneais/patologia , Neoplasias Retroperitoneais/diagnóstico por imagem , Neoplasias Retroperitoneais/diagnóstico , Neoplasias Retroperitoneais/cirurgia
10.
Transl Cancer Res ; 13(6): 2847-2859, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988940

RESUMO

Background: Osteosarcoma (OS) is a malignancy originating from mesenchymal tissue. Microfibril-associated protein 2 (MFAP2) plays a crucial role in cancer, notably promoting epithelial-mesenchymal transition (EMT). However, its involvement in OS remains unexplored. Methods: MFAP2 was silenced in U2OS cells using shRNA targeting MFAP2 (sh-MFAP2) and validated by quantitative real-time polymerase chain reaction (qRT-PCR). We extracted gene chip data of MFAP2 from multiple databases (GSE28424, GSE42572, and GSE126209). Correlation analyses between MFAP2 and the Notch1 pathway identified through the gene set variation analysis (GSVA) enrichment analysis were conducted using the Pearson correlation method. Cellular behaviors (viability, migration, and invasion) were assessed via the Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays. EMT markers (N-cadherin, vimentin, and ß-catenin) and Notch1 levels were examined by western blotting and qRT-PCR. Cell morphology was observed microscopically to evaluate EMT. Finally, the role of MFAP2 in OS was validated through a xenograft tumor model. Results: OS cell lines exhibited higher MFAP2 mRNA expression than normal osteoblasts. MFAP2 knockdown in U2OS cells significantly reduced viability, migration, and invasion, along with downregulation of N-cadherin and vimentin, as well as upregulation of ß-catenin. MFAP2 significantly correlated with the Notch1 pathway in OS and its knockdown inhibited Notch1 protein expression. Furthermore, Notch1 activation reversed the inhibitory effects of MFAP2 knockdown on the malignant characteristic of U2OS cells. Additionally, MFAP2 knockdown inhibited tumor growth, expression levels of EMT markers, and Notch1 expression in OS tumor tissues. Conclusions: Our study revealed that MFAP2 was an upstream regulator of the Notch1 signaling pathway to promote EMT in OS. These findings suggested MFAP2 as a potential OS therapy target.

11.
Cancers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39001413

RESUMO

There has been little change to the standard treatment for osteosarcoma (OS) over the last 25 years and there is an unmet need to identify new biomarkers and novel therapeutic approaches if outcomes are to improve. Furthermore, there is limited evidence on the impact of OS treatment on patient-reported outcomes (PROs). ICONIC (Improving Outcomes through Collaboration in Osteosarcoma; NCT04132895) is a prospective observational cohort study recruiting newly diagnosed OS patients across the United Kingdom (UK) with matched longitudinal collection of clinical, biological, and PRO data. During Stage 1, which assessed the feasibility of recruitment and data collection, 102 patients were recruited at 22 sites with representation from patient groups frequently excluded in OS studies, including patients over 50 years and those with less common primary sites. The feasibility of collecting clinical and biological samples, in addition to PRO data, has been established and there is ongoing analysis of these data as part of Stage 2. ICONIC will provide a unique, prospective cohort of newly diagnosed OS patients representative of the UK patient population, with fully annotated clinical outcomes linked to molecularly characterised biospecimens, allowing for comprehensive analyses to better understand biology and develop new biomarkers and novel therapeutic approaches.

12.
Exp Cell Res ; : 114167, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004202

RESUMO

This research aims to explore the mechanism by which microRNAs may regulate the biological behavior of tumor cells in ALDH1+ fibrosarcoma. We identified differentially expressed miRNAs in ALDH+ NMFH-1 cells, screened genes related to sarcoma metastasis in the TCGA database, and finally obtained key genes regulated by miRNAs that are involved in metastasis. The function and mechanism of these key genes were then validated at the cellular level. Using the ULCAN database, a significant correlation was found between hsa-mir-206 and mortality in sarcoma patients. WGCNA analysis identified 352 genes related to tumor metastasis. Through Venn diagrams, we obtained 15 metastasis-related genes regulated by hsa-mir-206. Survival analysis showed that SYNPO2 expression is significantly correlated with survival rate and is significantly underexpressed in multiple tumors. SYNPO2 showed a negative correlation with macrophages and a positive correlation with CD8+ T cells. After inhibiting the expression of hsa-mir-206 with siRNA plasmids, the mRNA expression of SYNPO2 was significantly upregulated. The results of CCK8 assay, scratch assay, and transwell assay showed that the proliferation and migration ability of NFMH-1 cells were promoted after SYNPO2 was inhibited. ALDH1+ tumor stem cells promote the proliferation and invasion of malignant fibrous histiocytoma cells by inhibiting SYNPO2 through hsa-mir-206.

13.
Discov Oncol ; 15(1): 275, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980440

RESUMO

BACKGROUND: Osteosarcoma (OS), the most common primary malignant bone tumor, predominantly affects children and young adults and is characterized by high invasiveness and poor prognosis. Despite therapeutic advancements, the survival rate remains suboptimal, indicating an urgent need for novel biomarkers and therapeutic targets. This study aimed to investigate the prognostic significance of LGMN expression and immune cell infiltration in the tumor microenvironment of OS. METHODS: We performed an integrative bioinformatics analysis utilizing the GEO and TARGET-OS databases to identify differentially expressed genes (DEGs) associated with LGMN in OS. We conducted Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to explore the biological pathways and functions. Additionally, we constructed protein-protein interaction (PPI) networks, a competing endogenous RNA (ceRNA) network, and applied the CIBERSORT algorithm to quantify immune cell infiltration. The diagnostic and prognostic values of LGMN were evaluated using the area under the receiver operating characteristic (ROC) curve and Cox regression analysis. Furthermore, we employed Consensus Clustering Analysis to explore the heterogeneity within OS samples based on LGMN expression. RESULTS: The analysis revealed significant upregulation of LGMN in OS tissues. DEGs were enriched in immune response and antigen processing pathways, suggesting LGMN's role in immune modulation within the TME. The PPI and ceRNA network analyses provided insights into the regulatory mechanisms involving LGMN. Immune cell infiltration analysis indicated a correlation between high LGMN expression and increased abundance of M2 macrophages, implicating an immunosuppressive role. The diagnostic AUC for LGMN was 0.799, demonstrating its potential as a diagnostic biomarker. High LGMN expression correlated with reduced overall survival (OS) and progression-free survival (PFS). Importantly, Consensus Clustering Analysis identified two distinct subtypes of OS, highlighting the heterogeneity and potential for personalized medicine approaches. CONCLUSIONS: Our study underscores the prognostic value of LGMN in osteosarcoma and its potential as a therapeutic target. The identification of LGMN-associated immune cell subsets and the discovery of distinct OS subtypes through Consensus Clustering Analysis provide new avenues for understanding the immunosuppressive TME of OS and may aid in the development of personalized treatment strategies. Further validation in larger cohorts is warranted to confirm these findings.

14.
Cells ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38994992

RESUMO

Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.


Assuntos
Retículo Endoplasmático , Resposta ao Choque Térmico , Termogênese , Humanos , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Hipertermia/metabolismo , Hipertermia/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
15.
Biochem Genet ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954213

RESUMO

Sarcomas are malignant tumors that may metastasize and the course of the disease is highly aggressive in children and young adults. Because of the rare incidence of sarcomas and the heterogeneity of tumors, there is a need for non-invasive diagnostic and prognostic biomarkers in sarcomas. The aim of the study was to investigate the level of miR-218-5p in peripheral blood and tumor tissue samples of Ewing's sarcoma, osteosarcoma, spindle cell sarcoma patients, and healthy controls, and assessed whether the corresponding molecule was a diagnostic and prognostic biomarker. The study was performed patients (n = 22) diagnosed and treated with Ewing's sarcoma and osteosarcoma and in a control group of 22 healthy children who were matched for age, gender, and ethnicity with the patient group. The expression level of miR-218-5p in RNA samples from peripheral blood and tissue samples were analyzed using the RT-PCR and the expression level of miR-218-5p was evaluated by comparison with the levels in patients and healthy controls. The expression level of miR-218-5p was found to be statistically higher (3.33-fold, p = 0.006) in pediatric patients with sarcomas and when the target genes of miR-218-5p were investigated using the bioinformatics tools, the miR-218-5p was found as an important miRNA in cancer. In this study, the miR-218-5p was shown for the first time to have been highly expressed in the peripheral blood and tumor tissue of sarcoma patients. The results suggest that miR-218-5p can be used as a diagnostic and prognostic biomarker in sarcomas and will be evaluated as an important therapeutic target.

16.
J Bone Oncol ; 47: 100613, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975333

RESUMO

Background: Osteosarcoma is the most common primary bone malignancy. It has classically been described as having a bimodal incidence by age. We sought to identify whether the bimodal incidence distribution still exists for osteosarcoma using the SEER and NIS databases. Methods: Incidence rates of primary osteosarcoma between 2000-2021 were analyzed by age at diagnosis, year of occurrence, sex, and tumor site from the SEER Research Data, 17 Registries, Nov 2023 Sub (2000-2021). The incidence of cases in 35-64 year-olds and 65 and above was compared statistically to determine if there is an increased incidence in the later ages. Incidence of tumors of the long bones of the lower limbs from the NIS discharge database 2012-2019 was also analyzed for comparison. Results: Overall, 5,129 cases of osteosarcoma were reported in the SEER database. Across the 22 calendar year span, a consistent first peak appeared in the second decade of life. There was no consistent second peak in the 35+ age group. There were 86,100 discharges with long bone tumors analyzed in the NIS data which exhibited nearly identical patterns. Conclusions: Our analysis shows that the incidence of osteosarcoma is no longer bimodally distributed but rather unimodally distributed.

17.
J Bone Oncol ; 47: 100614, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975332

RESUMO

Objective: To develop a model combining clinical and radiomics features from CT scans for a preoperative noninvasive evaluation of Huvos grading of neoadjuvant chemotherapy in patients with HOS. Methods: 183 patients from center A and 42 from center B were categorized into training and validation sets. Features derived from radiomics were obtained from unenhanced CT scans.Following dimensionality reduction, the most optimal features were selected and utilized in creating a radiomics model through logistic regression analysis. Integrating clinical features, a composite clinical radiomics model was developed, and a nomogram was constructed. Predictive performance of the model was evaluated using ROC curves and calibration curves. Additionally, decision curve analysis was conducted to assess practical utility of nomogram in clinical settings. Results: LASSO LR analysis was performed, and finally, three selected image omics features were obtained.Radiomics model yielded AUC values with a good diagnostic effect for both patient sets (AUCs: 0.69 and 0.68, respectively). Clinical models (including sex, age, pre-chemotherapy ALP and LDH levels, new lung metastases within 1 year after surgery, and incidence) performed well in terms of Huvos grade prediction, with an AUC of 0.74 for training set. The AUC for independent validation set stood at 0.70. Notably, the amalgamation of radiomics and clinical features exhibited commendable predictive prowess in training set, registering an AUC of 0.78. This robust performance was subsequently validated in the independent validation set, where the AUC remained high at 0.75. Calibration curves of nomogram showed that the predictions were in good agreement with actual observations. Conclusion: Combined model can be used for Huvos grading in patients with HOS after preoperative chemotherapy, which is helpful for adjuvant treatment decisions.

18.
Open Med (Wars) ; 19(1): 20240995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978960

RESUMO

Osteosarcoma is a highly aggressive bone tumor primarily affecting children and adolescents. Despite advancements in treatment modalities, the prognosis for osteosarcoma patients remains poor, emphasizing the need for a deeper understanding of its underlying mechanisms. In recent years, the concept of cancer stem cells (CSCs) has emerged as a crucial factor in tumor initiation, progression, and therapy resistance. These specialized subpopulations of cells possess self-renewal capacity, tumorigenic potential, and contribute to tumor heterogeneity. Sox9, a transcription factor known for its critical role in embryonic development and tissue homeostasis, has been implicated in various malignancies, including osteosarcoma. This review aims to summarize the current knowledge regarding the role of Sox9 in CSCs in osteosarcoma and its potential implications as a prognosis and therapeutic target.

19.
J Inflamm Res ; 17: 4315-4330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979436

RESUMO

Background: Post-translational modifications (PTM) significantly influence the pathogenesis and progression of diverse neoplastic conditions. Nevertheless, there has been limited research focusing on the potential of PTM-related genes (PTMRGs) as tumor biomarkers for predicting the survival of specific patients. Methods: The datasets utilized in this research were obtained from the TARGET and GEO repositories, respectively. The gene signature was constructed through the utilization of LASSO Cox regression method. GSEA and GO was used to identify hub pathways associated with risk genes. The functionality of risk genes in osteosarcoma (OS) cell lines was verified through the implementation of the CCK-8 assay, cell cycle analysis, and immunofluorescence assay. Results: Two distinct PTM patterns and gene clusters were finally determined. Significant differences in the prognosis of patients were found among two different PTM patterns and gene clusters, so were in the function enrichment and the landscape of TME immune cell infiltration. Moreover, we examined two external immunotherapy cohorts and determining that patients in the low-risk group was more likely to profit from immunotherapy. In addition, we mapped the expression of the genes in the signature in distinct cells using single-cell analysis. Finally, CCK-8 assay, cell cycle analysis, and immunofluorescence assay were utilized to confirm that RAD21 was expressed and functioned in OS. Conclusion: In conclusion, this study elucidated the potential link between PTM and immune infiltration landscape of OS for the first time and provided a new assessment protocol for the precise selection of treatment strategies for patients with advanced OS.

20.
Res Sq ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947012

RESUMO

Inhibition of translation initiation using eIF4A inhibitors like (-)-didesmethylrocaglamide [(-)-DDR] and (-)-rocaglamide [(-)-Roc] is a potential cancer treatment strategy as they simultaneously diminish multiple oncogenic drivers. We showed that human and dog osteosarcoma cells expressed high levels of eIF4A1/2, particularly eIF4A2. Genetic depletion of eIF4A1 and/or 2 slowed osteosarcoma cell growth. To advance preclinical development of eIF4A inhibitors, we demonstrated the importance of (-)-chirality in DDR for growth-inhibitory activity. Bromination of DDR at carbon-5 abolished growth-inhibitory activity, while acetylating DDR at carbon-1 was tolerated. Like DDR and Roc, DDR-acetate increased the γH2A.X levels and induced G2/M arrest and apoptosis. Consistent with translation inhibition, these rocaglates decreased the levels of several mitogenic kinases, the STAT3 transcription factor, and the stress-activated protein kinase p38. However, phosphorylated p38 was greatly enhanced in treated cells, suggesting activation of stress response pathways. RNA sequencing identified RHOB as a top upregulated gene in both DDR- and Roc-treated osteosarcoma cells, but the Rho inhibitor Rhosin did not enhance the growth-inhibitory activity of (-)-DDR or (-)-Roc. Nonetheless, these rocaglates potently suppressed tumor growth in a canine osteosarcoma patient-derived xenograft model. These results suggest that these eIF4A inhibitors can be leveraged to treat both human and dog osteosarcomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...