Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Reprod Biol ; 24(3): 100917, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970978

RESUMO

The treatment of ovarian cancer (OC) remains one of the greatest challenges in gynaecological oncology. The presence of classic steroid receptors in OC makes hormone therapy an attractive option; however, the response of OC to hormone therapy is modest. Here, we compared the expression patterns of progesterone (PGR), androgen (AR) and oestrogen alpha (ERα) receptors between serous OC cell lines and non-cancer ovarian cells. These data were analysed in relation to steroid receptor expression profiles from patient tumour samples and survival outcomes using a bioinformatics approach. The results showed that ERα, PGR and AR were co-expressed in OC cell lines, and patient samples from high-grade and low-grade OC co-expressed at least two steroid receptors. High AR expression was negatively correlated, whereas ERα and PGR expression was positively correlated with patient survival. AR showed the opposite expression pattern to that of ERα and PGR in type 1 (SKOV-3) and 2 (OVCAR-3) OC cell lines compared with non-cancer (HOSEpiC) ovarian cells, with AR downregulated in type 1 and upregulated in type 2 OC. A low AR/PGR ratio and a high ESR1/AR ratio were associated with favourable survival outcomes in OC compared with other receptor ratios. Although the results must be interpreted with caution because of the small number of primary tumour samples analysed, they nevertheless suggest that the evaluation of ERα, AR and PGR by immunohistochemistry should be performed in patient biological material to plan future clinical trials.

2.
Adv Exp Med Biol ; 1452: 119-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805128

RESUMO

Mitochondrial dysfunctions are significantly implicated in cancer initiation, progression, and metastasis, which have been shown for several cancers including ovarian cancer.An increase in mitochondrial dysfunction is also associated with drug resistance along with cancer progression, which in part is related to its specific microenvironment that is characterized by ascites, low glucose levels, and hypoxia that causes ovarian cancer cells to switch to mitochondrial respiration to enable their survival. Peritoneal ascitic fluid accumulation is a specific feature of ovarian cancer, and it is a major cause of its metastatic spread that also presents challenges for effective treatment. Among the treatment difficulties for ovarian cancer is the mutation rate and frequency of mtDNA in ovarian cancer tissue that can affect the efficiency of chemotherapeutic drugs. The varied and multiple mutations of different types enable metabolic reprogramming, cancer cell proliferation, and drug resistance.New specific information on mechanisms underlying several of the mitochondrial dysfunctions has led to proposing various mitochondrial determinants as targets for ovarian cancer therapy, which include targeting specific mitochondrial proteins and phosphoproteins as well as reactive oxygen species (ROS) that accumulate abnormally in cancer cells. Because of the genetically and histologically heterogeneous nature of the disease, combination therapy approaches will be necessary to combat the disease and achieve progress in effective treatment of ovarian cancer. This chapter will address (1) mitochondrial vulnerabilities underlying dysfunction and disease; (2) mitochondrial dysfunction in ovarian cancer; (3) present treatment difficulties for ovarian cancer and new potential treatment strategies to target ovarian cancer mitochondrial metabolism; and (4) biobehavioral factors influencing ovarian cancer development.


Assuntos
Proliferação de Células , Mitocôndrias , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Feminino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proliferação de Células/genética , Espécies Reativas de Oxigênio/metabolismo , Metástase Neoplásica , Microambiente Tumoral , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
3.
Biochem Biophys Res Commun ; 722: 150162, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38801802

RESUMO

Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.


Assuntos
Proliferação de Células , Glutamina , Ácido Oleico , Neoplasias Ovarianas , Via de Pentose Fosfato , Glutamina/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proliferação de Células/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Feminino , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Glucose/metabolismo
4.
Biol Pharm Bull ; 47(2): 417-426, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38296488

RESUMO

Small molecule drugs containing morpholine-based moieties have become crucial candidates in the tumor targeted therapy strategies, but the specific molecular mechanisms of these drugs causing tumor cell death require further investigation. The morpholine derivative N-(4-morpholinomethylene)ethanesulfonamide (MESA) was used to stimulate prostate and ovarian cancer cells and we focused on the ferroptosis effects, including the target molecule and signal pathways mediated by MESA. The results showed that MESA could induce ferroptosis to cause the proliferation inhibition and apoptosis effects of tumor cells according to the identification of ferroptosis inhibitor fer-1 and other cell death inhibitors. Further MESA could significantly increase the intracellular malondialdehyde (MDA), reactive oxygen species (ROS) and Fe2+ levels in tumor cells and mediate the dynamic changes of ferroptosis-relative molecules GPX4, nuclear factor erythroid2-related factor 2 (NRF2), ACSL4, SLC7A11 and P62-Kelch-like ECH-associated protein 1 (KEAP1)-NRF2-antioxidant response element (ARE) signal pathways. Further, NRF2 overexpression could reduce the tumor cell death and ROS levels exposure to MESA. Most importantly, it was confirmed that MESA could bind to NRF2 protein through molecular docking and thermal stability assays and NRF2 was a target molecule of MESA for inducing ferroptosis effects in tumor cells. Collectively, our findings indicated the ferroptosis effects of the morpholine derivative MESA in prostate and ovarian cancer cells and its function mechanism including targeted molecule and signal pathways, which would be helpful for developing MESA as a prospective small molecule drug for cancer therapy based on cell ferroptosis.


Assuntos
Ferroptose , Neoplasias Ovarianas , Masculino , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Estudos Prospectivos , Espécies Reativas de Oxigênio , Morfolinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico
5.
Adv Med Sci ; 68(2): 379-385, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37806183

RESUMO

PURPOSE: The primary limiting factor in achieving cures for patients with cancer, particularly ovarian cancer, is drug resistance. The mechanisms of drug resistance of cancer cells during chemotherapy may include compounds of the extracellular matrix, such as the transforming growth factor-beta-induced protein (TGFBI). In this study, we aimed to analyze the TGFBI gene and protein expression in different sensitive and drug-resistant ovarian cancer cell lines, as well as test if TGFBI can be involved in the response to topotecan (TOP) at the very early stages of treatment. MATERIALS AND METHODS: In this study, we conducted a detailed analysis of TGFBI expression in different ovarian cancer cell lines (A2780, A2780TR1, A2780TR2, W1, W1TR, SKOV-3, PEA1, PEA2 and PEO23). The level of TGFBI mRNA (QPCR), intracellular and extracellular protein (Western blot analysis) were assessed in this study. RESULTS: We observed upregulation of TGFBI mRNA in drug-resistant cell lines and estrogen-receptor positive cell lines, which was supported by overexpression of both intracellular and extracellular TGFBI protein. We also showed the TGFBI expression after a short period of treatment of sensitive ovarian cancer cell lines with TOP. CONCLUSION: The expression of TGFBI in ovarian cancer cell lines suggests its role in the development of drug resistance.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Mensageiro , Topotecan/farmacologia , Topotecan/uso terapêutico , Fator de Crescimento Transformador beta
6.
Endocr Regul ; 57(1): 191-199, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37715983

RESUMO

Objectives. Bisphenol A (BPA) is an indispensable industrial chemical. However, as a proven endocrine disruptor, it may be associated with several health disturbances, including the reproductive functions impairment and cancer. Due to the restriction of BPA usage, many bisphenol derivatives gradually substitute BPA. However, studies have reported adverse biological effects of BPA analogs, but the specific sites of their action remain largely unknown. Nuclear receptors (NRs) appear to play significant roles in various types of cancer. In addition, they are considered relevant targets of bisphenols. In the present study, we investigated the effects of BPA and its analogs bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) on mRNA expression of selected NRs in the human ovarian epithelial cell line Caov3. The NRs examined included retinoic acid receptor α (RARA), retinoid X receptor α (RXRA), peroxisome proliferator activating receptor ß/δ (PPARD), chicken ovalbumin upstream promoter-transcription factor 2 (COUPTFII), and nuclear receptor-related protein 1 (NURR1). Methods. Caov3 cells were treated with the bisphenols at the concentrations of 1 nM, 100 nM, 10 µM and 100 µM. After 24 h and 72 h of incubation, cell viability was determined by the MTS assay, and the selected genes expression was analyzed using RT-qPCR. Results. Bisphenol treatment did not affect Caov3 cell viability, except the significant impairment after exposure to the highest BPAF dose (100 µM). At lower doses, neither bisphenol analog altered the expression of the NRs. However, at the highest concentration (100 µM), BPAF and BPA altered the mRNA levels of PPARD, COUPTFII, and NURR1 in a time- and receptor-specific manner. Conclusions. The effects of bisphenols on the specific NRs in the epithelial ovarian cancer cells were addressed for the first time by the present study. Although generally we did not find that bisphenols may provoke significant alterations in the expression of the selected NRs in Caov3 cells, they may alter mRNA expression of certain NRs at high concentrations.


Assuntos
Ovário , Humanos , Feminino , Linhagem Celular , Sobrevivência Celular
7.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108391

RESUMO

Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs' heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c).


Assuntos
Antineoplásicos , Neoplasias Epiteliais e Glandulares , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Biomarcadores Tumorais/metabolismo
8.
Biochem Biophys Res Commun ; 662: 1-7, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37088000

RESUMO

PURPOSE: The cancer-associated fibroblasts (CAFs) are one of the most abundant components of the tumor microenvironment (TME). CAFs have been implicated in tumor progression, extracellular matrix (ECM) remodeling, and treatment resistance. Drug resistance is the primary limiting factor in achieving cures for patients with cancer, particularly ovarian cancer. Therefore, inhibiting CAFs can be an effective strategies for cancer treatment. In this research, we studied whether CAFs have an influence on drug-sensitive ovarian cancer cells to become more resistant. We examined the influence of CAFs on genes and proteins expression changes in sensitive ovarian cancer cells. We prepared a 3D co-culture to investigate the role of CAFs on cancer cell morphology. METHODS: Here, we performed a detailed analysis of drug-sensitive ovarian cancer cell lines (A2780 and W1) and the influence of ovarian CAFs on the A2780 and W1 cells morphology, genes and proteins expression. The 2D and 3D cultures, genes expression analysis (TaqMan qPCR), and proteins expression (Western blot analysis) were assessed in this study. RESULTS: We observed upregulation of ABCC5, CYP2C8, CYP2C9, and DHFR mRNA in cell lines supplemented by CAFs medium. We showed fibronectin overexpression and COL3A1 downregulation after supplementation with CAFs. Co-culturing with CAFs prevented the formation of spheroids in 3D conditions. CONCLUSION: We demonstrated that the process of drug resistance in ovarian cancer cells is launched by CAFs. CAFs not only simulate cancer cells to produce drug transporters and specific enzymes production, but also remodel the TME to increase drug resistance. We believe that cancer progression and migration is due to the CAFs po-tumorigenic activity.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Microambiente Tumoral/genética
9.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982170

RESUMO

Peritoneal implantation and lymph node metastasis have different driving mechanisms in ovarian cancer. Elucidating the underlying mechanism of lymph node metastasis is important for treatment outcomes. A new cell line, FDOVL, was established from a metastatic lymph node of a patient with primary platinum-resistant ovarian cancer and was then characterized. The effect of NOTCH1-p.C702fs mutation and NOTCH1 inhibitor on migration was evaluated in vitro and in vivo. Ten paired primary sites and metastatic lymph nodes were analyzed by RNA sequencing. The FDOVL cell line with serious karyotype abnormalities could be stably passaged and could be used to generated xenografts. NOTCH1-p.C702fs mutation was found exclusively in the FDOVL cell line and the metastatic lymph node. The mutation promoted migration and invasion in cell and animal models, and these effects were markedly repressed by the NOTCH inhibitor LY3039478. RNA sequencing confirmed CSF3 as the downstream effector of NOTCH1 mutation. Furthermore, the mutation was significantly more common in metastatic lymph nodes than in other peritoneal metastases in 10 paired samples (60% vs. 20%). The study revealed that NOTCH1 mutation is probably a driver of lymph node metastasis in ovarian cancer, which offers new ideas for the treatment of ovarian cancer lymph node metastasis with NOTCH inhibitors.


Assuntos
Neoplasias Ovarianas , Feminino , Animais , Humanos , Metástase Linfática/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/patologia , Linfonodos/patologia , Linhagem Celular , Mutação , Receptor Notch1/genética , Receptor Notch1/metabolismo
10.
Biochem Biophys Res Commun ; 657: 24-34, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36965420

RESUMO

Fatty acids (FAs) play important roles in cell membrane structure maintenance, energy production via ß-oxidation, and as extracellular signaling molecules. Prior studies have demonstrated that exposure of cancer cells to FAs affects cell survival, cell proliferation, and cell motility. Oleic acid (OA) has somewhat controversial effects in cancer cells, with both pro- and anti-cancer effects, depending on cell type. Our prior findings suggested that OA enhances cell survival in serum starved HNOA ovarian cancer cells by activating glycolysis, but not ß-oxidation. Here, we pharmacologically examined the cellular mechanisms by which OA stimulates glycolysis in HNOA cells. OA induced cell cycle progression, leading to increase in cell number through peroxisome proliferator activated receptor (PPAR) α activation. OA-induced glycolysis was mediated by increased GLUT expression, and increases in GLUT expression were mediated by increased L-MYC expression. Furthermore, L-MYC expression was due to BRD4 activation. These findings suggested involvement of the BRD4-L-MYC-GLUT axis in OA-stimulated glycolysis. These results suggested that OA could activate PPARα to stimulate two pathways: glycolysis and cell cycle progression, and provided insight into the role of OA in ovarian cancer cell growth.


Assuntos
Neoplasias Ovarianas , PPAR alfa , Humanos , Feminino , PPAR alfa/metabolismo , Ácido Oleico/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Facilitadoras de Transporte de Glucose , Fatores de Transcrição/metabolismo , Ácidos Graxos/metabolismo , Proliferação de Células , Proteínas de Ciclo Celular/metabolismo
11.
Environ Sci Pollut Res Int ; 30(8): 20168-20184, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36251187

RESUMO

Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias Ovarianas , Satureja , Humanos , Feminino , Cisplatino/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Química Verde
12.
Front Biosci (Landmark Ed) ; 27(9): 262, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36224008

RESUMO

BACKGROUND: Enhanced glycolysis occurs in most human cancer cells and is related to chemoresistance. However, detailed mechanisms remain vague. METHODS: Using proteinomics analysis, we found that the glycolytic enzyme Phosphoglycerate mutase 1 (PGAM1) was highly expressed in the paclitaxel-resistant ovarian cancer cell line SKOV3-TR30, as compared to its parental cell line SKOV3. Cell Counting Kit-8 proliferation experiment, plasmids and siRNA transfection, pyruvic acid and lactic acid production detection, immunofluorescence staining of functional mitochondria and oxygen consumption rate and extracellular acidification rate measurement were uesd to assess the glycolytic metabolism and paclitaxel resistance in ovarian cancer cells. The expression and prognostic effect of PGAM1 in 180 ovarian cancer patients were analyzed. RESULTS: SKOV3-TR30 cells display higher glycolytic flux and lower mitochondrial function than SKOV3 cells. Down-regulation of PGAM1 in SKOV3-TR30 cells resulted in decreased paclitaxel resistance. Up-regulation of PGAM1 in SKOV3 cells led to enhanced paclitaxel resistance. Analysis of the glycolytic flux revealed that PGAM1-mediated pyruvic acid or lactic acid production could modulate the capabilities of ovarian cancer cell resistance to paclitaxel. Our data also show high expression of PGAM1 as significantly correlated with reduced overall survival and reduced progression free survival in ovarian cancer patients. CONCLUSIONS: PGAM1 acts to promote paclitaxel resistance via pyruvic acid and/or lactate production in ovarian cancer cells. Inhibiting PGAM1 may provide a new approach to favorably alter paclitaxel resistance in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Paclitaxel , Fosfoglicerato Mutase/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Glicólise , Humanos , Ácido Láctico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Fosfoglicerato Mutase/genética , Ácido Pirúvico , RNA Interferente Pequeno/metabolismo
13.
Int J Oncol ; 61(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205138

RESUMO

The Hedgehog (Hh) signaling pathway is essential for normal embryonic development, while its hyperactivation in the adult organism is associated with the development of various cancers. The role of the Hh signaling pathway in ovarian cancer has not been sufficiently investigated. Therefore, the present study investigated the role of protein patched homolog 1 (PTCH1), a component of the Hh signaling pathway, and changes in the promoter methylation status of the corresponding gene in a cohort of low­(LGSC) and high­grade serous ovarian carcinomas (HGSC) and HGSC cell lines (OVCAR8 and OVSAHO). PTCH1 protein expression level was analyzed using immunohistochemistry in tissue samples and immunofluorescence and western blotting in cell lines. DNA methylation patterns of the PTCH1 gene were analyzed using methylation­specific PCR. PTCH1 protein expression was significantly higher in HGSCs and LGSCs compared with controls (healthy ovaries and fallopian tubes). Similarly, ovarian cancer cell lines exhibited significantly higher PTCH1 protein expression compared with a normal fallopian tube non­ciliated epithelial cell line (FNE1). PTCH1 protein fragments of different molecular weights were detected in all cell lines, indicating possible proteolytic cleavage of this protein, resulting in the generation of soluble N­terminal fragments that are translocated to the nucleus. DNA methylation of the PTCH1 gene promoter was exclusively detected in a proportion of HGSC (13.5%) but did not correlate with protein expression. PTCH1 protein was highly expressed in serous ovarian carcinoma tissues and cell lines, while PTCH1 promoter methylation was only detected in HGSC. Further investigation is required to elucidate the possible mechanisms of PTCH1 activation in serous ovarian carcinomas.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Adulto , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/patologia , Feminino , Proteínas Hedgehog , Humanos , Neoplasias Ovarianas/patologia , Receptor Patched-1/genética
14.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(2): 175-180, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-36031578

RESUMO

Objective: To investigate the effects of SI-4650, a novel small molecule inhibitor of spermine oxidase (SMO), on the proliferation and epithelial mesenchymal transformation (EMT) of human ovarian cancer SKVO-3 cells as well as its underlying molecular mechanisms. Methods: SKVO-3 cells treated with 0 µmol/L SI-4650 were used as control group, SKVO-3 cells treated with 30, 60 µmol/L SI-4650 were used as experimental group. The effects of SI-4650 on the activity of SMO, the polyamine contents and the cellular reactive oxygen species (ROS) were detected. Cell proliferation, cell cycle and mitochondrial membrane potential change of SKVO-3 cells were tested. The effects of SI-4650 on apoptosis, migration and invasion were investigated. The effects of SI-4650 on Bax, Bcl-2, Caspase3, E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase 2 ( MMP2) and MMP 9 expression levels in SKVO-3 cells were detected. Results: Comparison between blank control group and experimental groups,SI-4650 could improve the content of SI-4650 in SKVO-3 cells. SI-4650 could inhibit the activity of SMO (P<0.01), reduce the ROS (P<0.01)and polyamine content in SKVO-3 cells (P<0.01). Treatment of SKVO-3 cells with SI-4650 inhibited the proliferation (the inhibition rate was 32.27% and 47.31% in experimental groups), caused S-phase cell cycle arrest (P<0.01) and induced apoptosis (P<0.01). The expressions of Bax and c-Caspase3 in SKVO-3 cells were increased (P<0.01),the content of Bcl-2 was decreased (P<0.01), and the mitochondrial membrane potential was decreased (P<0.01), and the number of apoptotic cells was increased(31.41% and 43.51% in experimental groups). At the same time, SI-4650 could change the expression levels of EMT-related factors, increased the expression level of E-cad , decreased the expression levels of N-cad, Vimentin, MMP-2 and MMP-9, and inhibited the migration and invasion of SKVO-3 cells. Conclusion: SI-4650 can effectively inhibit proliferation, invasion and metastasis of human ovarian cancer SKVO-3 cells, and the mechanism may be related to its ability to depress the activity of SMO, interfere polyamine metabolism and induce cell cycle arrest, mitochondrial apoptosis and inhibit EMT. This study reveals potential application of SI-4650 in the treatment of ovarian cancer.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Metaloproteinase 2 da Matriz , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Poliaminas , Proteínas Proto-Oncogênicas c-bcl-2 , Espécies Reativas de Oxigênio , Vimentina , Proteína X Associada a bcl-2 , Poliamina Oxidase
15.
Bioorg Chem ; 128: 106072, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944468

RESUMO

Three new amide alkaloids, piperlongumamides D-F (14, 19, and 32); a new piperic ester, piperlongumester A (45); and two new natural compounds, methyl (2E,4Z)-5-(1,3-benzodioxol-5-yl)penta-2,4-dienoate (46) and trans-piperolein B ester (47), along with 41 known compounds were isolated from the fruits of Piper longum L. Their structures were identified by analyzing spectroscopic data, including mass spectrometry, 1D, and 2D NMR data. The anti-inflammatory and cytotoxic activities of all isolated compounds (1-47) were evaluated. Compounds 3, 6, and 19 inhibited nitric oxide production with IC50 values of 16.1 ± 0.94, 14.5 ± 0.57, and 27.3 ± 1.11 µM, respectively, whereas compound 1 exhibited strong cytotoxic activity toward three ovarian cancer cell lines A2780, TOV-112D, and SK-OV3, with IC50 values of 6.7 ± 0.77, 5.8 ± 0.29, and 48.3 ± 0.40 µM, respectively. Molecular docking simulations were performed to identify the interaction and binding mechanisms of these active metabolites with proteins related to inflammation and cancer.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias Ovarianas , Piper , Alcaloides/química , Amidas/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ésteres/farmacologia , Feminino , Frutas/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Ovarianas/tratamento farmacológico , Piper/química
16.
Front Pharmacol ; 13: 882756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620291

RESUMO

In this study, we describe the synthesis, characterization and antiproliferative activity of three organo-ruthenium(II) half-sandwich complexes [RuCl(η6-p-cym)(N,S-L)]Cl (I, II, and III). To form these complexes, three thiosemicarbazone ligands (TSCs) were synthesized; L = 5-nitro-2-carboxyaldehyde-thiophen-N-methyl-thiosemicarbazone, (L1); 2-acetyl-5-bromo-thiophen-N-methyl-thiosemicarbazone, (L2) and 2-acetyl-5-bromo-thiophen-N,N-dimethyl-thiosemicarbazone, (L3). The isolated compounds were analyzed using spectroscopic techniques such as elemental analysis, conductance measurements, FT-IR, 1H NMR spectroscopy, MALDI-TOF mass spectrometry, and single-crystal XRD. Our results demonstrated that the synthesized thiosemicarbazone ligands (TSCs) are bound to the metal ion as a bidentate ligand that coordinates through the thiocarbonyl sulfur and azomethine nitrogen atoms in all complexes (I, II, and III). The X-ray crystal structures of L1 and L2 revealed that both compounds are crystallized in the triclinic crystal system with space group P-1. The biological potency of newly synthesized TSC ligands (L1, L2, and L3) and their corresponding ruthenium complexes (I, II, and III) were investigated on human primary ovarian (A2780) and human metastatic ovarian (OVCAR-3) cell lines. To get detailed information respecting antitumor properties, cytotoxicity, DNA/BSA binding affinity, cellular uptake, DNA binding competition, and trans-epithelial resistance measurement assays were performed. Our results demonstrate that newly synthesized ruthenium(II) complexes possess potential biological activity. Moreover, we observe that the ruthenium complexes reported here show anticancer activity on primary (A2780) and metastatic (OVCAR-3) ovarian cancer cells.

17.
Protein J ; 41(2): 337-344, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35524873

RESUMO

C-C motif chemokine ligand 5 (CCL5) is crucial in the tumor microenvironment. It has been previously reported to act as a key role in tumor invasion and metastasis. However, the function of exogenous CCL5 in ovarian cancer has not been well-characterized. The present study attempted to express and purify recombinant CCL5 protein and investigate the exogenous CCL5 in ovarian cancer cell proliferation. The human CCL5 was amplified and inserted into the pET-30a vectors for prokaryotic expression in Escherichia coli BL21. Soluble His-CCL5 was successfully expressed with 0.1 mmol/L of isopropyl-ß-D-1-tiogalactopiranoside at 25 ℃ and purified by affinity chromatography. Additionally, methyl thiazolyl tetrazolium (MTT) assay demonstrated that CCL5 promotes ovarian cancer cell proliferation; increases the phosphorylation levels of extracellular-signal-regulated kinase and mitogen-activated protein kinase/ERK kinase, and increases the mRNA levels of Jun, NF-κB2, Nras, Relb, and Traf2. Furthermore, treatment with the MEK inhibitor reduced the Jun, NF-κB2, and Traf2 mRNA levels, indicating that exogenous CCL5 increased ovarian cancer cell proliferation, through MEK/ERK pathway activation, and Jun, NF-κB2, and Traf2 expression. The present study provided primary data for further studies to discover more CCL5 functions in ovarian cancer.


Assuntos
Subunidade p52 de NF-kappa B , Neoplasias Ovarianas , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL5/farmacologia , Feminino , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Mensageiro/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Microambiente Tumoral
18.
Biomed Pharmacother ; 150: 113036, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489285

RESUMO

BACKGROUND: Inherent or developed during treatment drug resistance is the main reason for the low effectiveness of chemotherapy in ovarian cancer. IFI16 is a cytoplasmic/nuclear protein involved in response to virus's infection and cell cycle arrest associated with the cellular senescence. METHODS: Here we performed a detailed IFI16 expression analysis in ovarian cancer cell lines sensitive (A2780) and resistant to doxorubicin (DOX) (A2780DR1 and A2780DR2) and paclitaxel (PAC) (A2780PR1). IFI16 mRNA level, protein level in the nuclear and cytoplasmic fraction (Western blot analysis), the protein expression in cancer cells and nuclei (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were performed in this study. RESULTS: We observed upregulation of IFI16 expression in drug resistant cell lines with dominant cytoplasmic localization in DOX-resistant cell lines and nuclear one in the PAC-resistant cell line. The most abundantly overexpressed isoforms of IFI16 were IFI16A and IFI16C. Finally, an analysis of a histological type of ovarian cancer (immunohistochemistry) showed expression in serous ovarian cancer. CONCLUSIONS: Expression of IFI16 in drug-resistant cell lines suggests its role in drug resistance development in ovarian cancer. Expression in serous ovarian cancer suggests its role in the pathogenesis of this histological type.


Assuntos
Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Interferon gama , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfoproteínas/metabolismo
19.
Biochem Biophys Res Commun ; 563: 40-46, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34058473

RESUMO

Standard chemotherapy for ovarian cancers is often abrogated by drug resistance. Specifically, resistance to cisplatin is a major clinical obstacle to successful treatment of ovarian cancers. The aim of this study was to develop a therapeutic strategy using natural killer (NK) cells to treat cisplatin-resistant ovarian cancers. First, we compared the responses of ovarian cancer cell line A2780 and its cisplatin-resistant counterpart, A2780cis, to treatment with cisplatin plus NK92MI cells. Although combined treatment induces apoptosis of ovarian cancer cells via ROS-dependent and -independent mechanisms, A2780cis were resistant to NK92MI cell-mediated cytotoxicity. We found that A2780cis cells showed markedly higher expression of immune checkpoint protein, PD-L1, than the parental cells. Although pretreatment of A2780cis cells with cisplatin stimulated further expression of PD-L1, it also increased expression of ULBP ligands, which are activating receptors on NK92MI cells, both in vitro and in vivo. These findings suggest that combined use of cisplatin plus NK cell-mediated immunotherapy could overcome immunoresistance of chemoresistant ovarian cancers.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Matadoras Naturais/citologia , Neoplasias Ovarianas/terapia , Antineoplásicos/química , Cisplatino/química , Feminino , Humanos , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
20.
J Control Release ; 334: 106-113, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33872627

RESUMO

For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.


Assuntos
Adenoviridae , Anticorpos de Domínio Único , Adenoviridae/genética , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética , Vetores Genéticos , Anticorpos de Domínio Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...