Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Biochem Biophys Res Commun ; 691: 149306, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38056247

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Our previous study on IMTs reveals that disrupt NMD pathway causes to lower the threshold for triggering the immune cell infiltration, thereby resulting in inappropriate immune activation. However, myofibroblast differentiation and proliferation is not yet known. METHODS: RT-PCR, RT-qPCR, DNA sequence, western bolt, 5'race analysis and site-specific mutagenesis were used in this study. RESULTS: Here, an alternative spliced (ALS) UPF2 mRNA skipping exon 2 and 3 and corresponding to the truncated UPF2 protein were found in 2 pancreatic IMTs. We showed that the uORF present in the 5'UTR of UPF2 mRNA is responsible for the translation inhibition, whiles ALS UPF2 is more facilitated to be translated into the truncated UPF2 protein. Several mRNA targets of the NMD were upregulated in IMT samples, indicating that the truncated UPF2 function is strongly perturbed, resulted in disrupted NMD pathway in IMTs. These upregulated NMD targets included cdkn1a expression and the generation of high levels of p21 (waf1/cip1), which may contribute to triggering IMTs. CONCLUSION: The disrupt UPFs/NMD pathway may link to molecular alteration associated with differentiation and proliferation for IMTs.


Assuntos
Neoplasias , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Cell Mol Life Sci ; 80(3): 80, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869202

RESUMO

Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Receptor alfa de Estrogênio , Tamoxifeno , Estrogênios , Linhagem Celular
3.
Clin Res Hepatol Gastroenterol ; 47(4): 102106, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849079

RESUMO

BACKGROUND & AIMS: Accumulating evidence suggest that Hippo-yes-associated protein (YAP) pathway plays important roles in development and repair after injuries in biliary system. We disclosed that senescent biliary epithelial cells (BECs) participate in the pathogenesis of primary biliary cholangitis (PBC). We hypothesized that dysregulation of Hippo-YAP pathway may be associated with biliary epithelial senescence in pathogenesis of PBC. APPROACH & RESULTS: Cellular senescence was induced in cultured BECs by treatment with serum depletion or glycochenodeoxycholic acid. The expression and activity of YAP1 were significantly decreased in senescent BECs (p<0.01). Cellular senescence and apoptosis were significantly increased (p<0.01) and a proliferation activity and a 3D-cyst formation activity were significantly decreased (p<0.01) by a knockdown of YAP1 in BECs. The expression of YAP1 were immunohistochemically determined in livers taken from the patients with PBC (n = 79) and 79 control diseased and normal livers and its association with senescent markers p16INK4a and p21WAF1/Cip1 was analyzed. The nuclear expression of YAP1, which indicates activation of YAP1, was significantly decreased in BECs in small bile ducts involved in cholangitis and ductular reactions in PBC, compared to control livers (p<0.01). The decreased expression of YAP1 was seen in senescent BECs showing expression of p16INK4a and p21WAF1/Cip1 in bile duct lesions. CONCLUSION: Dysregulation of Hippo-YAP1 pathway may be involved in the pathogenesis of PBC in association with biliary epithelial senescence.


Assuntos
Cirrose Hepática Biliar , Humanos , Proteínas de Sinalização YAP , Inibidor p16 de Quinase Dependente de Ciclina , Ductos Biliares/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/metabolismo
4.
Cells ; 11(5)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269453

RESUMO

In this review, we seek a novel strategy for establishing a rejuvenating microenvironment through senescent cells specific reprogramming. We suggest that partial reprogramming can produce a secretory phenotype that facilitates cellular rejuvenation. This strategy is desired for specific partial reprogramming under control to avoid tumour risk and organ failure due to loss of cellular identity. It also alleviates the chronic inflammatory state associated with ageing and secondary senescence in adjacent cells by improving the senescence-associated secretory phenotype. This manuscript also hopes to explore whether intervening in cellular senescence can improve ageing and promote damage repair, in general, to increase people's healthy lifespan and reduce frailty. Feasible and safe clinical translational protocols are critical in rejuvenation by controlled reprogramming advances. This review discusses the limitations and controversies of these advances' application (while organizing the manuscript according to potential clinical translation schemes) to explore directions and hypotheses that have translational value for subsequent research.


Assuntos
Envelhecimento , Reprogramação Celular , Envelhecimento/patologia , Senescência Celular/genética , Humanos , Longevidade , Rejuvenescimento
5.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500594

RESUMO

Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient's survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study's aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
Medicina (Kaunas) ; 57(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066975

RESUMO

Background andObjective: Epigenetic modifications are believed to play a significant role in the development of cancer progression, growth, differentiation, and cell death. One of the most popular histone deacetylases inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, can directly activate p21WAF1/CIP1 gene transcription through hyperacetylation of histones by a p53 independent mechanism. In the present investigation, we evaluated the correlation between histone modifications and DNA methyltransferase enzyme levels following SAHA treatments in A2780 ovarian cancer cells. Materials and Methods: Acetylation of histones and methyltransferases levels were analyzed using RT2 profiler PCR array, immunoblotting, and immunofluorescence methods in 2D and 3D cell culture systems. Results: The inhibition of histone deacetylases (HDAC) activities by SAHA can reduce DNA methyl transferases / histone methyl transferases (DNMTs/HMTs) levels through induction of hyperacetylation of histones. Immunofluorescence analysis of cells growing in monolayers and spheroids revealed significant up-regulation of histone acetylation preceding the above-described changes. Conclusions: Our results depict an interesting interplay between histone hyperacetylation and a decrease in methyltransferase levels in ovarian cancer cells, which may have a positive impact on the overall outcomes of cancer treatment.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Ovarianas , Acetilação , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Humanos , Metiltransferases , Neoplasias Ovarianas/tratamento farmacológico
7.
JHEP Rep ; 3(3): 100286, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34041468

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is a rare cholangiopathy of unknown aetiopathogenesis. The aim of this study was to evaluate cellular senescence (CS) marker expression in cholangiocytes of patients with PSC and their correlation with clinical-pathological features and prognosis. METHODS: Thirty-five patients with PSC with at least 1 available liver sampling were included. Clinical laboratory data at the time of liver sampling were collected. The endpoints were survival without liver transplantation (LT), time to LT, and survival without LT or cirrhosis decompensation. Histological grading and staging were assessed according to Nakanuma. Immunohistochemical stains for CS markers, p16INK4A (p16) and p21WAF1/Cip1 (p21), were performed and scored by a 3-tier scale based on positivity extent in native bile duct (NBD) and ductular reaction (DR).Results: p16 expression in NBD and DR was directly correlated with fibrosis (p ≤0.001 for both) and stage (p = 0.006 and p <0.001, respectively). Moreover, p16 in NBD was positively correlated with hepatitis activity (HA) (p = 0.026), whereas p16 in DR was directly correlated with bile duct loss (BDL) (p = 0.005) and metaplastic hepatocytes (MH) (p <0.01). p21 expression in NBD and DR was directly correlated with HA (p = 0.004 and p = 0.043, respectively), fibrosis (p = 0.006 and p <0.001, respectively), stage (p = 0.006 and p = 0.001, respectively), BDL (p = 0.002 and p = 0.03, respectively), and DR and MH (p ≤0.004 for all). By multivariate analysis, p16 expression in DR was independently associated with stage (p = 0.001), fibrosis (p = 0.001), and BDL (p = 0.011). p21 expression in NBD was independently associated with HA (p = 0.012), BDL (p = 0.04), and DR (p = 0.014). Finally, p21 expression in DR was independently associated with LT-free survival, time to LT, and adverse outcome-free survival (p = 0.001, p = 0.017, and p = 0.001, respectively). CONCLUSIONS: Cholangiocyte senescence is detectable in all stages of PSC and is associated with histological and clinical disease severity, potentially representing a new prognostic and therapeutic target. LAY SUMMARY: In this study, we showed that cholangiocyte senescence (CS), previously demonstrated in liver of patients with end-stage primary sclerosing cholangitis (PSC), is an early event and is detectable in all disease stages. Moreover, we observed that CS is associated with histological and clinical disease severity and patients' outcome. Thus, we suggest that CS may represent a new prognostic tool and a potential therapeutic target in PSC. CLINICAL TRIAL NUMBER: Protocol number 0034435, 08/06/2020.

8.
Front Oncol ; 11: 648045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869046

RESUMO

NK2 homeobox 5 (Nkx2.5), a homeobox-containing transcription factor, is associated with a spectrum of congenital heart diseases. Recently, Nkx2.5 was also found to be differentially expressed in several kinds of tumors. In colorectal cancer (CRC) tissue and cells, hypermethylation of Nkx2.5 was observed. However, the roles of Nkx2.5 in CRC cells have not been fully elucidated. In the present study, we assessed the relationship between Nkx2.5 and CRC by analyzing the expression pattern of Nkx2.5 in CRC samples and the adjacent normal colonic mucosa (NCM) samples, as well as in CRC cell lines. We found higher expression of Nkx2.5 in CRC compared with NCM samples. CRC cell lines with poorer differentiation also had higher expression of Nkx2.5. Although this expression pattern makes Nkx2.5 seem like an oncogene, in vitro and in vivo tumor suppressive effects of Nkx2.5 were detected in HCT116 cells by establishing Nkx2.5-overexpressed CRC cells. However, Nkx2.5 overexpression was incapacitated in SW480 cells. To further assess the mechanism, different expression levels and mutational status of p53 were observed in HCT116 and SW480 cells. The expression of p21WAF1/CIP1, a downstream antitumor effector of p53, in CRC cells depends on both expression level and mutational status of p53. Overexpressed Nkx2.5 could elevate the expression of p21WAF1/CIP1 only in CRC cells with wild-type p53 (HCT116), rather than in CRC cells with mutated p53 (SW480). Mechanistically, Nkx2.5 could interact with p53 and increase the transcription of p21WAF1/CIP1 without affecting the expression of p53. In conclusion, our findings demonstrate that Nkx2.5 could act as a conditional tumor suppressor gene in CRC cells with respect to the mutational status of p53. The tumor suppressive effect of Nkx2.5 could be mediated by its role as a transcriptional coactivator in wild-type p53-mediated p21WAF1/CIP1 expression.

9.
Front Genet ; 12: 597566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633779

RESUMO

Human Werner syndrome (WS) is an autosomal recessive progeria disease. A mouse model of WS manifests the disease through telomere dysfunction-induced aging phenotypes, which might result from cell cycle control and cellular senescence. Both p21Waf1/Cip1 (p21, encoded by the Cdkn1a gene) and p16Ink4a (p16, encoded by the Ink4a gene) are cell cycle inhibitors and are involved in regulating two key pathways of cellular senescence. To test the effect of p21 and p16 deficiencies in WS, we crossed WS mice (DKO) with p21 -/- or p16 -/- mice to construct triple knockout (p21-TKO or p16-TKO) mice. By studying the survival curve, bone density, regenerative tissue (testis), and stem cell capacity (intestine), we surprisingly found that p21-TKO mice displayed accelerated premature aging compared with DKO mice, while p16-TKO mice showed attenuation of the aging phenotypes. The incidence of apoptosis and cellular senescence were upregulated in p21-TKO mice tissue and downregulated in p16-TKO mice. Surprisingly, cellular proliferation in p21-TKO mice tissue was also upregulated, and the p21-TKO mice did not show telomere shortening compared with age-matched DKO mice, although p16-TKO mice displayed obvious enhancement of telomere lengthening. Consistent with these phenotypes, the SIRT1-PGC1 pathway was upregulated in p16-TKO but downregulated in p21-TKO compared with DKO mouse embryo fibroblasts (MEFs). However, the DNA damage response pathway was highly activated in p21-TKO, but rescued in p16-TKO, compared with DKO MEFs. These data suggest that p21 protected the stem cell reservoir by regulating cellular proliferation and turnover at a proper rate and that p21 loss in WS activated fairly severe DNA damage responses (DDR), which might cause an abnormal increase in tissue homeostasis. On the other hand, p16 promoted cellular senescence by inhibiting cellular proliferation, and p16 deficiency released this barrier signal without causing severe DDR.

10.
Anticancer Res ; 40(9): 4961-4968, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878784

RESUMO

BACKGROUND/AIM: Despite advances in treatment modalities, the visual prognosis of retinoblastoma still remains unsatisfactory, underscoring the need to develop novel therapeutic approaches. MATERIALS AND METHODS: The effect on the growth of six human retinoblastoma cell lines and a normal human fibroblast cell line of CEP1347, a small-molecule kinase inhibitor originally developed for the treatment of Parkinson's disease and therefore with a known safety profile in humans, was examined. The role of the P53 pathway in CEP1347-induced growth inhibition was also investigated. RESULTS: CEP1347 selectively inhibited the growth of retinoblastoma cell lines expressing murine double minute 4 (MDM4), a P53 inhibitor. Furthermore, CEP1347 reduced the expression of MDM4 and activated the P53 pathway in MDM4-expressing retinoblastoma cells, which was required for the inhibition of their growth by CEP1347. CONCLUSION: We propose CEP1347 as a promising candidate for the treatment of retinoblastomas, where functional inactivation of P53 as a result of MDM4 activation is reportedly common.


Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Retinoblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Retinoblastoma/metabolismo , Retinoblastoma/patologia
11.
Mol Ther Oncolytics ; 17: 471-483, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32490171

RESUMO

miR-155 is associated with the promotion of tumorigenesis. Herein, we indicate that abnormal miR-155 was negatively correlated with the expression of P21WAF1/Cip1. Our results suggest that miR-155 alters the transcriptome and inhibits the expression of H3F3A in liver cancer cells. Therefore, miR-155 inhibits the methylation modification of histone H3 on the 27th lysine. Notably, on the one hand, miR-155-dependent CTCF loops cause the CDK2 interacting with cyclin E in liver cancer cells; on the other hand, miR-155 promotes the phosphorylation modification of CDK2 by inhibiting H3F3A. Subsequently, miR-155 competitively blocks the binding of RNA polymerase II (RNA Pol II) to the P21WAF1/CIP1 promoter by increasing the phosphorylation of CDK2, inhibiting the transcription and translation of P21WAF1/CIP1. Strikingly, excessive P21WAF1/CIP1 abolishes the cancerous function of miR-155. In conclusion, miR-155 can play a positive role in the development of liver cancer and influence a series of gene expression through epigenetic regulation.

12.
Biochem Biophys Res Commun ; 524(3): 736-743, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32035614

RESUMO

Deferasirox (DFX) is an iron chelator approved for the treatment of iron overload diseases. However, the role of DFX in oxidative stress-induced cell apoptosis and the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this study, we found that DFX rendered resistant to H2O2-induced apoptosis in HEK293T cells, reduced the intracellular levels of the labile iron pool (LIP) and oxidative stress induced by H2O2. Furthermore, DFX inhibited the ubiquitination and degradation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) via modulation of the interaction of p21 with SCF-Skp2. DFX also showed the inhibition effect on the activation of c-Jun N-terminal kinase (JNK), pro-caspase-3 and related mitochondrial apoptosis pathway induced by H2O2. These results provide novel insights into the molecular mechanism underpinning iron-mediated oxidative stress and apoptosis, and they may represent a promising target for therapeutic interventions in related pathological conditions.


Assuntos
Apoptose/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citoproteção/efeitos dos fármacos , Deferasirox/farmacologia , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Caspase 3/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio , Ferro/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Andrologia ; 51(10): e13413, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31523838

RESUMO

As a highly evolutionarily conserved signaling pathway, Notch widely participates in cell-fate decisions and the development of various tissues and organs. In male reproduction, research on the Notch signaling pathway has mainly concentrated on germ cells and Sertoli cells. Leydig cells are the primary producers of testosterone and play important roles in spermatogenesis and maintaining secondary sexual characteristics. In this study, we used TM3 cells, a murine adult Leydig cell line, to investigate the expression profiles of Notch receptors and ligands and observe the effect of Notch signaling on the proliferation of TM3 cells. We found that Notch 1-3 and the ligands Dll-1 and Dll-4 were expressed in TM3 cells, Notch 1-3 and the ligand Dll-1 were expressed in testis interstitial Leydig cells, and Notch signaling inhibition suppressed the proliferation of TM3 cells and induced G0/G1 arrest. Inhibition of Notch signaling increased the expression of p21Waf1/Cip1 and p27. Overall, our results suggest that Notch inhibition suppresses the proliferation of TM3 cells and P21Waf1/Cip1 , and p27 may contribute to this process.


Assuntos
Derivados de Benzeno/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Propionatos/farmacologia , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Intersticiais do Testículo/fisiologia , Masculino , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
14.
Biochem Biophys Res Commun ; 517(2): 238-243, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31345573

RESUMO

Inhibition of gamma-glutamylcyclotransferase (GGCT), which is highly expressed in various cancer tissues, exerts anticancer effects both in vitro and in vivo. Previous studies have shown that depletion of GGCT blocks the growth of MCF7 breast cancer cells via upregulation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21); in addition, induction of autophagy plays a role in the upregulation of p21 upon GGCT knockdown. However, the mechanisms underlying induction of p21 in cancer cells are not fully understood. Here, we show that GGCT knockdown in PC3 human prostate cancer and A172 glioblastoma cells upregulates the mRNA and nuclear protein levels of Forkhead box O transcription factor 3a (FOXO3a), a transcriptional factor involved in tumor suppression. Simultaneous knockdown of FOXO3a and GGCT in PC3 and A172 cells attenuated upregulation of p21, followed by growth inhibition and cell death. Furthermore, simultaneous knockdown of GGCT and AMP-activated protein kinase (AMPK) α, a metabolic stress sensor, in PC3 and A172 cells led to marked attenuation of cellular responses induced by GGCT knockdown, including an increase in FOXO3a phosphorylation at Ser413, upregulation of p21, growth inhibition, and cell death. These results indicate that the AMPK-FOXO3a-p21 axis plays an important role in inhibition of cancer cell growth by depletion of GGCT.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Transdução de Sinais , gama-Glutamilciclotransferase/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Proteína Forkhead Box O3/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , gama-Glutamilciclotransferase/metabolismo , Quinases Ativadas por p21/metabolismo
15.
Neurosci Lett ; 708: 134354, 2019 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-31254559

RESUMO

The purpose of this study was to investigate the effects of different concentrations of ethanol on learning and memory in female mice and the corresponding interaction with histone deacetylase 1(HDAC1), estrogen receptor α(ERα) and p21 WAF1/CIP1. Data from the Morris water maze test showed that mice in the 50% ethanol group might experience cognitive impairment, while mice in the 2% ethanol group might experience enhanced cognitive capabilities. The number of damaged neurons in the hippocampal CA1 area in the 50% ethanol group was higher than the numbers observed in other groups. The expression of HDAC1 and ERα proteins was lower in the 50% ethanol group than they were in the control group, while p21 WAF1/CIP1 expression was increased. The expression of these proteins in the 2% ethanol group was completely reversed when compared to the 50% ethanol group. p21 WAF1/CIP1 was involved in the cognitive change induced by ethanol. The f2 (-400 bp to -800 bp) and f7 (-2400 bp to -2800 bp) fragments in the p21 WAF1/CIP1 promoter region were functionally active regions that experienced binding relating to HDAC1 and ERα.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Feminino , Histona Desacetilase 1/metabolismo , Camundongos
16.
Free Radic Biol Med ; 137: 1-12, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31004750

RESUMO

In a previous study, p21Waf1/Cip1 (p21) promoted activation of the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, which has an important role in regulating apoptosis triggered by oxidative stress and inhibiting development of osteoporosis. Chlorogenic acid (CGA) has a strong protective effect on osteoporosis, closely related to activating the Nrf2/HO-1 pathway. However, whether CGA can resist apoptosis by regulating p21 and consequently promote activation of the Nrf2/HO-1 pathway needs further investigation. MC3T3-E1 cells were treated with dexamethasone (Dex), with or without CGA pre-treatment. Cell proliferation and cytotoxicity were measured using MTT assay and LDH release assay, respectively, and apoptosis assessed by flow cytometry. CGA significantly attenuated mitochondrial apoptosis and reversed down-regulation of p21 in osteoblastic MC3T3-E1 cells exposed to Dex. Additionally, CGA decreased Keap1 expression and promoted activation of the Nrf2/HO-1 pathway, quenching intracellular reactive oxygen species (ROS), hydrogen peroxide (H2O2) and mitochondrial superoxide overproduction boosted by Dex. Importantly, depletion of p21 by siRNA blocked activation of the Nrf2/HO-1 pathway, enhanced oxidative stress and increased apoptosis induced by CGA in MC3T3-E1 cells challenged with Dex. Therefore, CGA promoted the Nrf2/HO-1 anti-oxidative pathway by activating p21 to prevent Dex-induced mitochondrial apoptosis in osteoblastic cells. This pathway has potential as a therapeutic target for prevention and treatment of osteoporosis.


Assuntos
Ácido Clorogênico/metabolismo , Osteoblastos/fisiologia , Osteoporose/metabolismo , Animais , Apoptose , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dexametasona/metabolismo , Heme Oxigenase-1/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Cancer Med ; 8(5): 2313-2324, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30854807

RESUMO

p21WAF1/CIP1 (p21) plays critical roles in cell-cycle regulation and DNA repair and is transcriptionally regulated through p53-dependent or -independent pathways. Bioinformatic analysis predicated one stress-response element (STRE) implicated in single nucleotide polymorphism (SNP) rs2395655 of the p21 promoter. Here, we investigated the transcriptional regulatory function of rs2395655 variant genotype and analyzed its associations with the p21 expression and clinical outcomes in esophageal squamous cell carcinoma (ESCC) patients. Luciferase assay results showed significantly increased transcriptional activity of the rs2395655 G allele-containing p21 promoter compared with rs2395655 A allele-containing counterpart, especially in ESCC cells with ectopic LEDGF/p75 expression. Furthermore electrophoretic mobility shift assay using the rs2395655 G or A allele-containing probe and chromatin immunoprecipitation assay with specific anti-LEDGF/p75 antibody indicated the potential binding activity of LEDGF/p75 with the STRE element implicated in rs2395655 G allele of the p21 promoter. Subsequent specific RNA interference-mediated depletion or ectopic expression of LEDGF/p75 caused obviously down- or up-regulated expression of p21 mRNA in ESCC cells harboring rs2395655 GG genotype but not cells with rs2395655 AA genotype. Furthermore, rs2395655 GG genotype carriers showed significantly elevated p21 protein expression and conferred survival advantage in both univariate and multivariate analyses in total 218 ESCC patients. Our findings suggest that LEDGF/p75 regulates the p21 expression in ESCC cells through interacting with STRE element implicated in polymorphism rs2395655 and the elevated p21 protein expression and rs2395655 GG genotype may serve as positive prognostic factors for ESCC patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Adulto , Idoso , Alelos , Linhagem Celular , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Ativação Transcricional
18.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646538

RESUMO

The hYSK1, a serine/threonine kinase (STK)-25, has been implicated in a variety of cellular functions including cell migration and polarity. We have recently reported that hYSK1 down-regulated the expression and functions of p16INK4a, a cell cycle regulatory protein, thereby enhancing migration and growth of cancer cells under hypoxic conditions. In this study, we further investigated the mechanisms underlying downregulation of p16INK4a and anti-migratory function of hYSK1. Our study revealed that p21WAF1/Cip1 is a novel binding partner of hYSK1. Moreover, the interaction between hYSK1 and p21WAF1/Cip1 led to the inhibition of SP-1 transcriptional activity, as revealed by a significant down-regulation of SP-1-mediated transactivation of p16INK4a promoter, and accelerated MMP-2 expression. Conversely, the knock-down of hYSK1 enhanced the p16INK4a promoter activity and protein expression, and diminished MMP-2 transcription and protein levels in hypoxic conditions as compared to control. Taken together, hYSK1 blocks the p21WAF1/Cip1 functions by direct interaction and inhibits the p16INK4a expression and induces MMP-2 expression by its regulations of SP-1 transcriptional activity under the hypoxia conditions.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Hipóxia Celular/genética , Linhagem Celular , Movimento Celular/genética , Polaridade Celular/genética , Regulação da Expressão Gênica , Humanos , Metaloproteinase 2 da Matriz/genética , Proteínas de Membrana/genética , Regiões Promotoras Genéticas , Ligação Proteica , Mapas de Interação de Proteínas/genética
19.
Breast Cancer ; 26(2): 131-137, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30255294

RESUMO

p21Waf1/Cip1, the cyclin-dependent kinase (CDK) inhibitor belonging to the KIP/CIP family, was initially regarded as a tumor suppressor protein because it was recognized as the chief mediator of p53-dependent cell cycle arrest elicited by DNA damage. Conversely, it has been proposed that p21Waf1/Cip1 may also function as an oncogene because it can inhibit apoptosis. Thus, p21Waf1/Cip1 is regarded as a protein with a dual behavior, as its expression might cause potential benefits or dangerous effects in breast cancer. Consequently, careful planning is required in targeting p21Waf1/Cip1 expression for therapy of breast cancer patients. This review illustrates the discovery and mechanisms of induction of p21Waf1/Cip1. Then, we focus on elucidating the paradoxical effect of p21Waf1/Cip1 expression on human breast carcinogenesis and explaining how the subcellular localization (nuclear or cytoplasmic) of p21Waf1/Cip1 has an impact on both determining its fate as either cell-growth inhibitor or antiapoptotic molecule and, its effect on clinicopathological factors and prognosis of breast cancer patients. Moreover, we explore how the pattern of the p21Waf1/Cip1 could affect the responsiveness of human breast cancer to chemotherapy. Furthermore, the pharmacological approaches to target p21Waf1/Cip1 expression for therapy of breast cancer are clarified.


Assuntos
Neoplasias da Mama/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Citoplasma/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Prognóstico , Resultado do Tratamento , Proteínas Supressoras de Tumor/genética
20.
J Cell Biochem ; 120(1): 809-820, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145810

RESUMO

Curcumin, the active component of the spice turmeric, induce global DNA hypomethylation as it has been shown to inhibit DNA methyltransferases. It promotes cell death in cancer cells by arresting in the G1 phase. It was explained to cause increased expression of cell cycle regulator, p21 (WAF1/Cip1); however, the mechanism remains not clear. The p21 promoter harvests a CpG island (CGI) in the proximal region enriched with CG dinucleotide clusters with Kruppel-like factor 4 (KLF4) transcription factor binding site. We probed the p21 promoter CGI (spanning from -135 to +12, respective to the transcription start site) to detect alterations in cytosine methylation level in response to curcumin exposure in four different human cancer cell lines: A431, A549, MCF7, and HeLa. We observed curcumin (20 µM) treatment significantly increased the expression of p21, and the promoter CGI was demethylated in a dose-dependent manner. The curcumin significantly raised the level KLF4 and enhanced the p21 promoter occupancy by KLF4. From our results we hypothesize that curcumin-mediated demethylation of the p21 proximal promoter and increased KLF4 expression as well as its binding to its proximal promoter could serve as a mechanism that could be hypothesized to cause upregulation of p21 in presence of curcumin and thus its therapeutic implications could further be investigated.


Assuntos
Ilhas de CpG/efeitos dos fármacos , Curcumina/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Metilação de DNA/efeitos dos fármacos , Desmetilação/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/metabolismo , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Células A549 , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Curcuma/química , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Células HeLa , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...