Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Cureus ; 16(5): e60125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38864057

RESUMO

One of the crucial aspects of cancer research is diagnosis with specificity and accuracy. Early cancer detection mostly helps make appropriate decisions regarding treatment and metastasis. The well-studied transcription factor tumor suppressor protein p53 is essential for maintaining genetic integrity. p53 is a key tumor suppressor that recognizes the carcinogenic biological pathways and eradicates them by apoptosis. A wide range of carcinomas, especially gynecological such as ovarian, cervical, and endometrial cancers, frequently undergo TP53 gene mutations. This study evaluates the potential of the p53 gene as a biological marker for the diagnosis of reproductive system neoplasms. Immunohistochemistry of p53 is rapid, easy to accomplish, cost-effective, and preferred by pathologists as a surrogate for the analysis of TP53 mutation. Thus, this review lays a groundwork for future efforts to develop techniques using p53 for the early diagnosis of cancer.

2.
Cureus ; 16(4): e58091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38738026

RESUMO

Introduction Osteosarcoma, a malignant bone tumor, poses significant treatment challenges, necessitating the development of alternative therapeutic strategies. Aerva lanata (A. lanata), a medicinal plant with traditional use in various healthcare systems, has anti-cancer properties. This study looks at the oncolytic effect of A. lanata extract on osteosarcoma cell lines (sarcoma osteogenic-Saos2). Aim The aim of this study was to investigate the oncolytic effect of Aerva lanata on Saos2 cell lines through the apoptotic signaling pathway. Materials and methods A. lanata extract was prepared using Soxhlet extraction, and its cytotoxic effects on Saos2 cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-PCR) analysis of gene activity was used to assess the extract's effect on apoptotic signaling pathways. Results The MTT assay demonstrated a dose-dependent decrease in Saos2 proliferation following treatment with A. lanata extract at concentrations ranging from 50 µg to 200 µg. The standard deviations observed ranged from 1.414 to 7.071. Gene expression analysis revealed that the extract led to a reduction in the messenger ribonucleic acid (mRNA) levels of the anti-apoptotic marker B-cell lymphoma 2 (Bcl2), with standard deviations ranging from 1 to 0.535. Conversely, it induced an increase in the mRNA levels of the tumor suppressor protein p53, with standard deviations ranging from 1 to 1.835. These findings suggest that the extract modulates the apoptotic pathways of the Bcl2 and p53 genes.  Conclusion A. lanata extract exhibits promising anti-cancer activity against Saos2 osteosarcoma cell lines, inducing apoptosis by downregulating Bcl2 and increasing p53. The study's findings suggest that A. lanata may be useful as a natural treatment for osteosarcoma.

3.
Anal Chim Acta ; 1299: 342432, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499419

RESUMO

Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.


Assuntos
Neoplasias , Óxidos , Compostos de Manganês , Corantes Fluorescentes , Reprodutibilidade dos Testes , Biomimética , DNA/genética , Limite de Detecção
4.
Appl Biochem Biotechnol ; 196(3): 1350-1364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37395947

RESUMO

Mucuna pruriens (MP) which is commonly known as "Velvet Bean" is an underutilized legume traditionally used to treat Parkinson's disease and male fertility issues. Extracts of MP have also been identified for their antidiabetic, antioxidant, and antineoplastic effects. Commonly, the antioxidant and anticancer properties of a drug are linked together as antioxidants scavenge free radicals and prevent the cellular DNA damage which could result in cancer development. In this investigation, comparative assessment of the anticancer and antioxidant potentials of methanolic seed extracts from two common varieties of MP, Mucuna pruriens var. pruriens (MPP) and Mucuna pruriens var. utilis (MPU) against human colorectal cancer adenocarcinoma cells COLO-205, was carried out. The highest antioxidant potential was recorded with MPP with an IC50 of 45.71 µg/ml. The in vitro antiproliferative effects of MPP and MPU on COLO-205 showed an IC50 of 131.1 µg/ml and 246.9 µg/ml respectively. Our results revealed intervention of the MPP and MPU extracts in growth kinetics of the COLO-205 cells in concomitance with apoptosis induction up to 8.73- and 5.58-folds respectively. The AO/EtBr dual staining and the flow cytometry results also confirmed the better apoptotic efficacy of MPP over MPU. MPP at a concentration of 160 µg/ml exhibited highest apoptosis and cell cycle arrest. Furthermore, effect of the seed extracts on p53 expression was investigated by quantitative RT-PCR and a maximum upregulation of 1.12-fold was recorded with MPP.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Colorretais , Mucuna , Humanos , Masculino , Antioxidantes/farmacologia , Antineoplásicos/farmacologia , Sementes , Extratos Vegetais/farmacologia , Adenocarcinoma/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico
5.
Cancer Imaging ; 23(1): 88, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723592

RESUMO

BACKGROUND: The current study aimed to construct and validate a magnetic resonance imaging (MRI)-based radiomics nomogram to predict tumor protein p53 gene status in rectal cancer patients using machine learning. METHODS: Clinical and imaging data from 300 rectal cancer patients who underwent radical resections were included in this study, and a total of 166 patients with p53 mutations according to pathology reports were included in these patients. These patients were allocated to the training (n = 210) or validation (n = 90) cohorts (7:3 ratio) according to the examination time. Using the training data set, the radiomic features of primary tumor lesions from T2-weighted images (T2WI) of each patient were analyzed by dimensionality reduction. Multivariate logistic regression was used to screen predictive features, which were combined with a radiomics model to construct a nomogram to predict p53 gene status. The accuracy and reliability of the nomograms were assessed in both training and validation data sets using receiver operating characteristic (ROC) curves. RESULTS: Using the radiomics model with the training and validation cohorts, the diagnostic efficacies were 0.828 and 0.795, the sensitivities were 0.825 and 0.891, and the specificities were 0.722 and 0.659, respectively. Using the nomogram with the training and validation data sets, the diagnostic efficacies were 0.86 and 0.847, the sensitivities were 0.758 and 0.869, and the specificities were 0.833 and 0.75, respectively. CONCLUSIONS: The radiomics nomogram based on machine learning was able to predict p53 gene status and facilitate preoperative molecular-based pathological diagnoses.


Assuntos
Nomogramas , Neoplasias Retais , Humanos , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética , Imageamento por Ressonância Magnética , Aprendizado de Máquina , Mutação , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/genética
6.
Anal Chim Acta ; 1275: 341583, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37524467

RESUMO

An ultrasensitive electrochemical biosensor for detecting p53 gene was fabricated based on heated gold disk electrode coupling with endonuclease Nt.BstNBI-assisted target recycle amplification and alkaline phosphatase (ALP)-based electrocatalytic signal amplification. For biosensor assembling, biotinylated ssDNA capture probes were first immobilized on heated Au disk electrode (HAuDE), then combined with streptavidin-alkaline phosphatase (SA-ALP) by biotin-SA interaction. ALP could catalyze the hydrolysis of ascorbic acid 2-phosphate (AAP) to produce ascorbic acid (AA). While AA could induce the redox cycling to generate electrocatalytic oxidation current in the presence of ferrocene methanol (FcM). When capture probes hybridized with p53, Nt.BstNBI would recognize and cleave the duplexes and p53 was released for recycling. Meanwhile, the biotin group dropt from the electrode surface and subsequently SA-ALP could not adhere to the electrode. The signal difference before and after cleavage was proportional to the p53 gene concentration. Furthermore, with electrode temperature elevated, the Nt.BstNBI and ALP activities could be increased, greatly improving the sensitivity and efficiency for p53 detection. A detection limit of 9.5 × 10-17 M could be obtained (S/N = 3) with an electrode temperature of 40 °C, ca. four magnitudes lower than that at 25 °C.


Assuntos
Técnicas Biossensoriais , Biotina , Fosfatase Alcalina/metabolismo , Técnicas Eletroquímicas , Ouro , Calefação , Endonucleases , Proteína Supressora de Tumor p53/genética , Genes p53 , Eletrodos , Limite de Detecção
7.
Protein Pept Lett ; 30(6): 477-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37183466

RESUMO

BACKGROUND: The creation of brand-new, potent, and less harmful medications to treat leukemia is urgently needed. Antimicrobial peptides (AMPs) have drawn a lot of interest as potential substitutes for chemotherapy. OBJECTIVE: In the present investigation, the anticancer activity of CM11, a short cationic AMP, was assessed on Jurkat and Raji leukemia cell lines and peripheral blood mononuclear cells (PBMCs). METHODS: Different CM11 doses were applied to the Jurkat and Raji cell lines and PBMCs throughout a 24-hour period. The impact of the CM11 on cell viability and toxicity was assessed using an MTT assay. Flow cytometry and Real-Time PCR were used to analyze the effect of this peptide on apoptotic/necrosis pathways and assess the ratio expression of the P53 and Bcl-2 genes, respectively. RESULTS: Despite the fact that peptide toxicity was successful in a variety of cell lines, cancer cells were more sensitive to the medication. The survival of Jurkat and Raji cell lines treated with 32 µg/ml peptide was 47% and 51%, respectively, while the survival of normal PBMC cells was about 65%. According to flow cytometry, Jurkat and Raji cells exposed to peptide had much greater levels of apoptosis than PBMCs. Peptide-treated cells were associated with increased expression of P53 the gene and decreased expression of the Bcl-2 gene. CONCLUSION: These results revealed that the CM11 caused more cytotoxicity to leukemia Raji and Jurkat leukemia cells compared to the normal cells by apoptosis pathway. Our findings demonstrated the potential of CM11 peptide to develop as a new antileukemic agent.


Assuntos
Cecropinas , Leucemia , Humanos , Cecropinas/farmacologia , Meliteno/farmacologia , Leucócitos Mononucleares , Proteína Supressora de Tumor p53/genética , Apoptose , Células Jurkat , Peptídeos/farmacologia , Leucemia/tratamento farmacológico , Linhagem Celular Tumoral
8.
J Cancer Res Ther ; 19(2): 208-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006059

RESUMO

Background: ">ki67 may be used as a proliferative index in addition to estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) negative status. p53 gene expression is a well-known biomarker in breast cancer and its role in predicting clinical outcome remains unclear. The current study aimed to determine the relationship between p53 gene mutation and ki67 expression, their clinical characteristics, and overall survival (OS), and to differentiate the significance of p53 and ki67 as the prognostic value in breast cancer patients. Methods: ">In this study, 135 patients were enrolled in the study from December 2015 to May 2017. Medical records for all patients were reviewed prospectively. The inclusion criteria included age more than 18 years with histologically proven breast cancer and willingness to be enrolled in p53 genetic study. Exclusion criteria included dual malignancy, male breast cancer, with a loss to follow-up during the study. Results: ">The mean survival of patients with ki67 ≤20 index was 42.7 months (95% confidence interval [CI] 38.7-46.7) and 129 months (95% CI 101.3-157.2) in patients with ki67 >20. The mean OS was 145 months (95% CI 105.6-185.5) in the p53 wild-type group and 106 months (95% CI 78.0-133.0) in the p53 mutated group, as illustrated. Conclusion: ">Our results indicated that p53 mutational status and high ki67 might have an essential impact on overall survival, with p53 mutated patients having a poorer outcome than p53 wild type patients.


Assuntos
Neoplasias da Mama , Proteína Supressora de Tumor p53 , Humanos , Masculino , Adolescente , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Prognóstico , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
9.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049742

RESUMO

An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Proteína Supressora de Tumor p53/metabolismo , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Variações do Número de Cópias de DNA , Prognóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Biomarcadores , Desenvolvimento de Medicamentos , Encéfalo/metabolismo
10.
Mikrochim Acta ; 190(4): 113, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869936

RESUMO

An improved electrochemical sensor has been developed for sensitive detection of the p53 gene based on exponential amplification reaction (EXPAR) and CRISPR/Cas12a. Restriction endonuclease BstNI is introduced to specifically identify and cleave the p53 gene, generating primers to trigger the EXPAR cascade amplification. A large number of amplified products are then obtained to enable the lateral cleavage activity of CRISPR/Cas12a. For electrochemical detection, the amplified product activates Cas12a to digest the designed block probe, which allows the signal probe to be captured by the reduced graphene oxide-modified electrode (GCE/RGO), resulting in an enhanced electrochemical signal. Notably, the signal probe is labeled with large amounts of methylene blue (MB). Compared with traditional endpoint decoration, the special signal probe effectively amplifies the electrochemical signals by a factor of about 15. Experimental results show that the electrochemical sensor exhibits wide ranges from 500 aM to 10 pM and 10 pM to 1 nM, as well as a relatively low limit detection of 0.39 fM, which is about an order of magnitude lower than that of fluorescence detection. Moreover, the proposed sensor shows reliable application capability in real human serum, indicating that this work has great prospects for the construction of a CRISPR-based ultra-sensitive detection platform.


Assuntos
Sistemas CRISPR-Cas , Genes p53 , Humanos , Primers do DNA , Eletrodos , Fluorescência
11.
Anal Bioanal Chem ; 415(3): 405-410, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370202

RESUMO

Sensitive and reliable detection of the p53 gene plays a significant role in precise cancer targeting and in fundamental research. However, the sensitivity of existing p53 gene detection approaches remains to be improved. Herein, we develop a target recognition assisted-primer exchange reaction (Ta-PER) for sensitive analysis of the p53 gene. Ta-PER was initiated by the recognition of a designed dumbbell structure probe by the p53 gene. In Ta-PER, the primer exchange reaction (PER) was combined with molecular beacon-based chain recycling to construct the signal amplification process. Through integrating target recognition with PER-based signal amplification, Ta-PER was established and exhibited a high detection sensitivity, with a limit of detection as low as 56 fM. In addition, the approach was also used to detect the p53 gene in normal HeLa cells and amatoxin-treated HeLa cells. The high level of the p53 gene in amatoxin-treated HeLa cells, which was approximately 1.67 times higher than that in HeLa cell extract, indicated the apoptosis of cells and suggested the promising prospect of the approach.


Assuntos
Técnicas Biossensoriais , Genes p53 , Humanos , Células HeLa , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
12.
Pharm Dev Technol ; 27(10): 1049-1056, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36398607

RESUMO

Recent findings revealed that low-concentration paclitaxel(DTX) could enhance cytotoxicity by upregulating p53 expression in lung cancer cell lines. So, co-delivery of DTX and RFP-p53 gene with PEA nanoparticles (NPs) was studied. The prepared DTX loaded PEA NPs (PEA/DTX) were characterized by particle size distribution, morphology, zeta potential, and crystallography and cytotoxicity. Results showed that the PEA/DTX NPs had a mall particle size (≤100 nm), moderate zeta potential (≥40 mV) and drug loading of 9.0%, DTX was released from PEA/DTX NPs in an extended period in vitro. More important, agarose gel electrophoresis showed that PEA/DTX cationic NPs were able to completely bind RFP-p53 gene with mean particles size and zeta potential. Studies on cellular uptake of (PEA/DTX)/RFP-p53 NPs demonstrated that both drug and gene were effectively taken up by A549 tumor cells. It was found that intravenous injection of (PEA/DTX)/RFP-p53 NPs efficiently inhibited growth of subcutaneous A549 carcinoma in vivo (p < 0.05) and was significantly less side effect than that of mice treated with the other groups. Therefore, the (PEA/DTX)/RFP-p53 NPs might be a promising candidate for A549 cancer therapy.


Assuntos
Nanopartículas , Polietilenoimina , Camundongos , Animais , Docetaxel/farmacologia , Pisum sativum , Genes p53 , Proteína Supressora de Tumor p53/genética , Taxoides , Nanopartículas/química
13.
Front Microbiol ; 13: 922324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267179

RESUMO

Cancer and bacterial infection are the most serious problems threatening people's lives worldwide. However, the overuse of antibiotics as antibacterial and anticancer treatments can cause side effects and lead to drug-resistant bacteria. Therefore, developing natural materials with excellent antibacterial and anticancer activity is of great importance. In this study, different concentrations of chitosan (CS), graphene oxide (GO), and graphene oxide-chitosan composite (GO-CS) were tested to inhibit the bacterial growth of gram-positive (Bacillus cereus MG257494.1) and gram-negative (Pseudomonas aeruginosa PAO1). Moreover, we used the most efficient natural antibacterial material as an anticancer treatment. The zeta potential is a vital factor for antibacterial and anticancer mechanism, at pH 3-7, the zeta potential of chitosan was positive while at pH 7-12 were negative, however, the zeta potential for GO was negative at all pH values, which (p < 0.05) increased in the GO-CS composite. Chitosan concentrations (0.2 and 1.5%) exhibited antibacterial activity against BC with inhibition zone diameters of 4 and 12 mm, respectively, and against PAO1 with 2 and 10 mm, respectively. Treating BC and PAO1 with GO:CS (1:2) and GO:CS (1:1) gave a larger (p < 0.05) inhibition zone diameter. The viability and proliferation of HeLa cells treated with chitosan were significantly decreased (p < 0.05) from 95.3% at 0% to 12.93%, 10.33%, and 5.93% at 0.2%, 0.4%, and 0.60% concentrations of chitosan, respectively. Furthermore, CS treatment increased the activity of the P53 protein, which serves as a tumor suppressor. This study suggests that chitosan is effective as an antibacterial and may be useful for cancer treatment.

14.
Anal Chim Acta ; 1221: 340132, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934367

RESUMO

MicroRNAs (miRNAs) and p53 gene can serve as valuable biomarkers for the diagnosis of a variety of cancers. Nevertheless, although the development of the DNA nanostructure on the detection of cancer-related biomarkers was initially demonstrated several years ago, the challenges of developing simpler, cheaper, and multi-level detection DNA biosensors persist. Herein, based on the rolling circle amplification (RCA) coupled with the target-triggered skill, we have developed a well-designed detecting platform. In this study, the dumbbell-shaped probes (DPP) could be cyclized and initiated through targets, thus beginning the target-catalyst RCA (tc-RCA) reaction, therefore engendering numerous dumbbell probe amplicons (DPA). Thereafter the probe primers (PP) mutually complementary to the loop of DPA was introduced, leading to the branch strand displacement reaction (B-SDA). SYBR Green I can effectively bind to the amplified double-stranded structures as a fluorescent reporter. Altering the target-binding sequence of the DPP, this biosensor can also be applied to detect different biomarkers. As a consequence, target miR-21 and p53 gene can be detected down to 0.65 fM and 2.04 fM respectively with a wide dynamic range. Moreover, we have also achieved the qualitative detection of interesting targets in cell lysates as well as the complex biological substrates and compared the results with reverse transcription quantitative PCR (RT-qPCR), thereby indicating the potential application in clinical diagnosis and biomedical research.


Assuntos
MicroRNAs , Técnicas de Amplificação de Ácido Nucleico , Biomarcadores , DNA/química , Genes p53 , Limite de Detecção , MicroRNAs/análise , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos
15.
Anal Chim Acta ; 1222: 339958, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35934418

RESUMO

The p53 gene is a known cancer marker. We report a novel protocol for the SERS tandem strategy to detect the p53 gene with high sensitivity. Herein, the click reaction between azide and alkyne was catalyzed by utilizing copper oxide nanoparticles (CuONPs), which were enriched by a T-DNA-triggered hybridization chain reaction (HCR). The T-DNA signal was amplified by establishing the correlation between the T-DNA signal and the concentration of CuONPs in a nonenzymatic isothermal environment. In contrast to other Raman reporters, we used alkynyl compounds as Raman reporters, which showed excellent characteristics in the Raman-silent region (1800-2800 cm-1). Therefore, the highly sensitive and highly selective SERS signals could be obtained in complex biological matrices. Due to utilizing multistep amplification strategies, including the nanoparticle-modified HCR polymer and "click" reaction, the limit of detection (LOD) and the limit of quantification (LOQ) of this sensor could be as low as 0.0174 pM and 0.0583 pM, respectively. The accuracy of the strategy expressed as the RSD was in the range of 3.14%-6.21%. The results indicated that the constructed sensor has excellent performance for the detection of the p53 gene in serum samples in a low concentration range, which suggests that the proposed enzyme-free SERS analytical sensor has good clinical application prospects.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Técnicas Biossensoriais/métodos , Catálise , Química Click/métodos , Cobre , DNA/química , DNA/genética , Genes p53 , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Nanopartículas/química , Polímeros , Análise Espectral Raman
16.
Phytochemistry ; 203: 113363, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944609

RESUMO

Tumor protein or cellular tumor antigen p53, is considered a critical transcriptional regulation factor, which can suppress the growth of tumor cells by activating other functional genes. The current study appraised the p53 activation pathways, which could be used as an alternative therapeutic strategy for the treatment of hepatocellular and ductal carcinoma. Algal polysaccharides have been used as emerging sources of bioactive natural pharmacophores. A sulfated galactofucan characterized as [→1)-O-4-sulfonato-α-fucopyranose-(3 â†’ 1)-α-fucopyranose-(3→] as the main branch with [→1)-6-O-acetyl-ß-galactopyranose-(4→] as side chain isolated from marine macroalga Turbinaria ornata exhibited prospective apoptosis on HepG2 (hepatocellular carcinoma) and MCF7 (ductal carcinoma) cells. Annexin V-fluorescein isothiocyanate-propidium iodide study displayed higher early apoptosis in MCF7 and HepG2 cell lines (56 and 24.2%, respectively) treated with TOP-3 (at IC50 concentration) than those administered with standard camptothecin. Upregulation of the p53 gene expression was perceived in TOP-3 treated HepG2 and MCF7 cells.


Assuntos
Carcinoma Ductal , Carcinoma Hepatocelular , Neoplasias Hepáticas , Phaeophyceae , Polissacarídeos , Apoptose , Camptotecina/farmacologia , Carcinoma Ductal/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Fucose , Galactose , Células Hep G2 , Humanos , Isotiocianatos , Neoplasias Hepáticas/tratamento farmacológico , Phaeophyceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/química , Sulfatos/química , Proteína Supressora de Tumor p53/metabolismo
17.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269987

RESUMO

The overall five-year survival rate for patients with esophageal cancer is low (15 to 25%) because of the poor prognosis at earlier stages. Rutaecarpine (RTP) is a bioalkaloid found in the traditional Chinese herb Evodia rutaecarpa and has been shown to exhibit anti-proliferative effect on tumor cells. However, the mechanisms by which RTP confer these effects and its importance in esophageal squamous cell carcinoma treatment remain unclear. Thus, in the present study, we first incubated human esophageal squamous cell carcinoma cell line, CE81T/VGH, with RTP to evaluate RTP's effects on tumor cell growth and apoptosis. We also performed a xenograft study to confirm the in vitro findings. Furthermore, we determined the expression of p53, Bax, bcl-2, caspase-3, caspase-9, and PCNA in CE81T/VGH cells or the tumor tissues to investigate the possible mechanisms. All the effects of TRP were compared with that of cisplatin. The results showed that RTP significantly inhibits CE81T/VGH cell growth, promotes arrest of cells in the G2/M phase, and induces apoptosis. Consistently, the in vivo study showed that tumor size, tumor weight, and proliferating cell nuclear antigen protein expression in tumor tissue are significantly reduced in the high-dose RTP treatment group. Furthermore, the in vitro and in vivo studies showed that RTP increases the expression of p53 and Bax proteins, while inhibiting the expression of Bcl-2 in cancer cells. In addition, RTP significantly increases the expression of cleaved caspase-9 and cleaved caspase-3 proteins in tumor tissues in mice. These results suggest that RTP may trigger the apoptosis and inhibit growth in CE81T/VGH cells by the mechanisms associated with the regulation of the expression of p53, Bax, Bcl-2, as well as caspase-9 and caspase-3.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Apoptose , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Humanos , Alcaloides Indólicos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinazolinas , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2/metabolismo
18.
Neurotoxicology ; 90: 158-171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337893

RESUMO

The neurobehavioral, brain redox-stabilizing and neurochemical modulatory properties of catechin and quercetin in rotenone-induced Parkinsonism, and the involvement of NF-κB-mediated inflammation, were investigated. Male Wistar rats subcutaneously administered with multiple doses of 1.5 mg/kg rotenone were post-treated with 5-20 mg/kg catechin or quercetin. This was followed by neurobehavioral evaluation, biochemical estimations, and assessment of neurotransmitter metabolism in the striatum. Expression of genes involved in the canonical pathway for the activation of NF-κB mediated inflammation (IL-1ß, TNF-α, NF-κB, and IκKB) and the pro-apoptotic gene, p53, in the striatum was determined by RT-qPCR. Catechin and quercetin mitigated neurobehavioral deficits caused by rotenone. Both flavonoids attenuated striatal redox stress and neurochemical dysfunction, optimized disturbed dopamine metabolism, and improved depletion of neuron density caused by rotenone toxicity. While administration of catechin produced a more pronounced attenuating effect on IL-1ß, TNF-α, and p53 genes, the attenuating effect of quercetin (20 mg/kg) was more pronounced on NF-κB and IκKB gene expressions when compared to the group administered with rotenone only. Comparatively, quercetin demonstrated superior protection against rotenone neurotoxicity. It is concluded that catechin and quercetin have potential relevance in Parkinson's disease therapy through amelioration of redox stress, optimization of dopamine metabolism, and modulation of anti-inflammatory and anti-apoptotic pathways.


Assuntos
Catequina , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Catequina/efeitos adversos , Dopamina/metabolismo , Genes p53 , Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Quercetina/farmacologia , Ratos , Ratos Wistar , Rotenona/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Life (Basel) ; 11(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34947951

RESUMO

The base editing 3 (BE3) system, a single-base gene editing technology developed using CRISPR/Cas9n, has a broad range of applications for human disease model construction and gene therapy, as it is highly efficient, accurate, and non-destructive. P53 mutations are present in more than 50% of human malignancies. Due to the similarities between humans and pigs at the molecular level, pig models carrying P53 mutations can be used to research the mechanism of tumorigenesis and improve tumor diagnosis and treatment. According to pathogenic mutations of the human P53 gene at W146* and Q100*, sgRNAs were designed to target exon 4 and exon 5 of the porcine P53 gene. The target editing efficiencies of the two sgRNAs were 61.9% and 50.0%, respectively. The editing efficiency of the BE3 system was highest (about 60%) when C (or G) was at the 5th base. Puromycin screening revealed that 75.0% (21/28) and 68.7% (22/32) of cell colonies contained a P53 mutation at sgRNA-Exon5 and sgRNA-Exon4, respectively. The reconstructed embryos from sgRNA-Exon5-5# were transferred into six recipient gilts, all of which aborted. The reconstructed embryos from sgRNA-Exon4-7# were transferred into 6 recipient gilts, 3 of which became pregnant, resulting in 14 live and 3 dead piglets. Sequencing analyses of the target site confirmed 1 P53 monoallelic mutation and 16 biallelic mutations. The qPCR analysis showed that the P53 mRNA expression level was significantly decreased in different tissues of the P53 mutant piglets (p < 0.05). Additionally, confocal microscopy and western blot analysis revealed an absence of P53 expression in the P53 mutant fibroblasts, livers, and lung tissues. In conclusion, a porcine cancer model with a P53 point mutation can be obtained via the BE3 system and somatic cell nuclear transfer (SCNT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...