Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Sci Rep ; 14(1): 11418, 2024 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763954

RESUMO

Numerous studies have highlighted the pivotal role of mitochondria-related genes (MRGs) in the initiation and progression of glioblastoma (GBM). However, the specific contributions of MRGs coding proteins to GBM pathology remain incompletely elucidated. The identification of prognostic MRGs in GBM holds promise for the development of personalized targeted therapies and the enhancement of patient prognosis. We combined differential expression with univariate Cox regression analysis to screen prognosis-associated MRGs in GBM. Based on the nine MRGs, the hazard ratio model was conducted using a multivariate Cox regression algorithm. SHC-related survival, pathway, and immune analyses in GBM cohorts were obtained from the Biomarker Exploration of the Solid Tumor database. The proliferation and migration of U87 cells were measured by CCK-8 and transwell assay. Apoptosis in U87 cells was evaluated using flow cytometry. Confocal microscopy was employed to measure mitochondrial reactive oxygen species (ROS) levels and morphology. The expression levels of SHC1 and other relevant proteins were examined via western blotting. We screened 15 prognosis-associated MRGs and constructed a 9 MRGs-based model. Validation of the model's risk score confirmed its efficacy in predicting the prognosis of patients with GBM. Furthermore, analysis revealed that SHC1, a constituent MRG of the prognostic model, was upregulated and implicated in the progression, migration, and immune infiltration of GBM. In vitro experiments elucidated that p66Shc, the longest isoform of SHC1, modulates mitochondrial ROS production and morphology, consequently promoting the proliferation and migration of U87 cells. The 9 MRGs-based prognostic model could predict the prognosis of GBM. SHC1 was upregulated and correlated with the prognosis of patients by involvement in immune infiltration. Furthermore, in vitro experiments demonstrated that p66Shc promotes U87 cell proliferation and migration by mediating mitochondrial ROS production. Thus, p66Shc may serve as a promising biomarker and therapeutic target for GBM.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Mitocôndrias , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Prognóstico , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular/genética , Apoptose/genética , Genes Mitocondriais , Feminino , Masculino
2.
Cell Commun Signal ; 22(1): 234, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643181

RESUMO

BACKGROUND: p66Shc, as a redox enzyme, regulates reactive oxygen species (ROS) production in mitochondria and autophagy. However, the mechanisms by which p66Shc affects autophagosome formation are not fully understood. METHODS: p66Shc expression and its location in the trophoblast cells were detected in vivo and in vitro. Small hairpin RNAs or CRISPR/Cas9, RNA sequencing, and confocal laser scanning microscope were used to clarify p66Shc's role in regulating autophagic flux and STING activation. In addition, p66Shc affects mitochondrial-associated endoplasmic reticulum membranes (MAMs) formation were observed by transmission electron microscopy (TEM). Mitochondrial function was evaluated by detected cytoplastic mitochondrial DNA (mtDNA) and mitochondrial membrane potential (MMP). RESULTS: High glucose induces the expression and mitochondrial translocation of p66Shc, which promotes MAMs formation and stimulates PINK1-PRKN-mediated mitophagy. Moreover, mitochondrial localized p66Shc reduces MMP and triggers cytosolic mtDNA release, thus activates cGAS/STING signaling and ultimately leads to enhanced autophagy and cellular senescence. Specially, we found p66Shc is required for the interaction between STING and LC3II, as well as between STING and ATG5, thereby regulates cGAS/STING-mediated autophagy. We also identified hundreds of genes associated several biological processes including aging are co-regulated by p66Shc and ATG5, deletion either of which results in diminished cellular senescence. CONCLUSION: p66Shc is not only implicated in the initiation of autophagy by promoting MAMs formation, but also helps stabilizing active autophagic flux by activating cGAS/STING pathway in trophoblast.


Assuntos
Autofagossomos , Trofoblastos Extravilosos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Autofagossomos/metabolismo , Autofagia , DNA Mitocondrial/metabolismo , Trofoblastos/metabolismo , Glucose/metabolismo , Nucleotidiltransferases/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612468

RESUMO

This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites' impacts on host cellular pathways. The results underscore a complex interplay between microbial metabolites, p66Shc activation, and mitochondrial dysfunction, highlighting the significance of the gut microbiome in influencing disease outcomes through oxidative stress pathways. Conclusively, the review posits that targeting the gut microbiota-p66Shc-mitochondrial axis could offer novel therapeutic strategies for mitigating the development and progression of metabolic diseases. This underscores the potential of dietary interventions and microbiota modulation in managing oxidative stress and inflammation, pivotal factors in chronic disease etiology.


Assuntos
Doenças Metabólicas , Humanos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteínas Adaptadoras de Transdução de Sinal , Fatores de Transcrição Forkhead , Mitocôndrias
4.
Biomed Pharmacother ; 174: 116537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579402

RESUMO

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Assuntos
Apoptose , Linfócitos B , Inibidores de Histona Desacetilases , Leucemia Linfocítica Crônica de Células B , Fator de Transcrição STAT4 , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Fator de Transcrição STAT4/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Benzamidas/farmacologia , Masculino , Idoso , Feminino , Pessoa de Meia-Idade
5.
Redox Rep ; 29(1): 2324234, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38444386

RESUMO

OBJECTIVES: Diabetic gastrointestinal dysfunction (DGD) is a serious complication of diabetic mellitus (DM), affecting the enteric nervous system (ENS), particular enteric glial cells (EGCs). This study aimed to elucidate the effects and underlying molecular mechanisms of hyperglycemic stress on EGCs in in vitro and in vivo models of DM. METHODS: In in vitro studies, enteric glial cell line CRL-2690 was exposed to hyperglycemia stress, and cell viability, cell apoptosis and oxidative damage were assessed. In in vivo studies, STZ-induced diabetic mice were constructed, and cell apoptosis and oxidative damage of EGCs in the duodenum of DM mice were assessed. RESULTS: The results showed that hyperglycemic stress markedly induced oxidative damage of EGCs in in vitro and in vivo models of DM. This damage was found to be dependent on the activation of redoxosomes, which involved the phosphorylation of SRC and Vav2, the up-regulation of active RAC1-GTP, and the activation of NADPH oxidase (NOX). Moreover, inhibitors of redoxosomes, such as the RAC1 inhibitor NSC23766 and the NOX inhibitor VAS2870, effectively mitigated the hyperglycemic stress-induced oxidative damage of EGCs. Additionally, inhibition of p66SHC, a downstream target of redoxosomes, attenuated oxidative damage of EGCs under hyperglycemic stress. DISCUSSION: Our findings suggest that the redoxosomes/p66SHC signaling is involved in the oxidative damage of EGCs during the pathological process of DGD. This signaling cascade may represent a potential therapeutic target for the treatment of DGD.


Assuntos
Diabetes Mellitus Experimental , Animais , Camundongos , NADPH Oxidases , Neuroglia , Estresse Oxidativo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
6.
Front Cell Dev Biol ; 12: 1297116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389706

RESUMO

Introduction: Escape from immunosurveillance is a hallmark of chronic lymphocytic leukemia (CLL) cells. In the protective niche of lymphoid organs, leukemic cells suppress the ability of T lymphocytes to form the immune synapse (IS), thereby hampering T-cell mediated anti-tumoral activities. By binding its cognate receptor PD-1 at the surface of T lymphocytes, the inhibitory ligand PD-L1, which is overexpressed in CLL cells, mediates the T-cell suppressive activities of CLL cells. However, the molecular mechanism underlying PD-L1 overexpression in CLL cells remains unknown. We have previously reported a defective expression of the pro-apoptotic and pro-oxidant adaptor p66Shc in CLL cells, which is causally related to an impairment in intracellular reactive oxygen species (ROS) production and to the activation of the ROS-sensitive transcription factor NF-κB. The fact that PD-L1 expression is regulated by NF-κB suggests a mechanistic relationship between p66Shc deficiency and PD-L1 overexpression in CLL cells. Methods: 62 treatment-naive CLL patients and 43 healthy donors were included in this study. PD-L1 and p66Shc expression was quantified in B cells by flow cytometry and qRT-PCR. IS architecture and local signaling was assessed by flow cytometry and confocal microscopy. CD8+ cell killing activity was assessed by flow cytometry. Results: Here we show that residual p66Shc expression in leukemic cells isolated both from CLL patients and from the CLL mouse model Eµ-TCL1 inversely correlated with PD-L1 expression. We also show that the PD-L1 increase prevented leukemic cells from forming ISs with T lymphocytes. Reconstitution of p66Shc, but not of a ROS-defective mutant, in both CLL cells and the CLL-derived cell line MEC-1, enhanced intracellular ROS and decreased PD-L1 expression. Similar results were obtained following treatment of CLL cells with H2O2 as exogenous source of ROS, that normalized PD-L1 expression and recovered IS formation. Discussion: Our data provide direct evidence that the p66Shc-deficiency-related ROS depletion in CLL cells concurs to enhance PD-L1 expression and provides a mechanistic basis for the suppression of T cell-mediated anti-tumoral functions in the immunosuppressive lymphoid niche.

7.
Front Pharmacol ; 15: 1318797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362155

RESUMO

P66Shc and Rac1 proteins are responsible for tumor-associated inflammation, particularly in brain tumors characterized by elevated oxidative stress and increased reactive oxygen species (ROS) production. Quercetin, a natural polyphenolic flavonoid, is a well-known redox modulator with anticancer properties. It has the capacity to cross the blood-brain barrier and, thus, could be a possible drug against brain tumors. In this study, we explored the effect of quercetin on Rac1/p66Shc-mediated tumor cell inflammation, which is the principal pathway for the generation of ROS in brain cells. Glioma cells transfected with Rac1, p66Shc, or both were treated with varying concentrations of quercetin for different time points. Quercetin significantly reduced the viability and migration of cells in an ROS-dependent manner with the concomitant inhibition of Rac1/p66Shc expression and ROS production in naïve and Rac1/p66Shc-transfected cell lines, suggestive of preventing Rac1 activation. Through molecular docking simulations, we observed that quercetin showed the best binding compared to other known Rac1 inhibitors and specifically blocked the GTP-binding site in the A-loop of Rac1 to prevent GTP binding and, thus, Rac1 activation. We conclude that quercetin exerts its anticancer effects via the modulation of Rac1-p66Shc signaling by specifically inhibiting Rac1 activation, thus restraining the production of ROS and tumor growth.

8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013482

RESUMO

@#[摘 要] P66Shc作为ShcA家族成员,具有家族特有的高度保守结构域,对细胞的增殖、分化和凋亡起重要的调控作用,因而在肿瘤发生发展中也起着关键性作用。在不同的肿瘤细胞中,p66Shc的表达表现出两面性:既可促进肿瘤生长和转移,也可以抑制肿瘤发展。异常水平表达的p66Shc通常与肿瘤细胞过度增殖、高转移风险和不良预后相关。P66Shc还可通过激活氧化应激通路来调节肿瘤细胞的代谢状态,参与协调肿瘤细胞凋亡、自噬和失巢凋亡等不同死亡方式。探究p66Shc在肿瘤发生发展中的作用及机制,可为肿瘤临床治疗中有效靶点的寻找带来更多新的突破。

9.
BMC Pharmacol Toxicol ; 24(1): 81, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129872

RESUMO

BACKGROUND: Quercetin (QC) possesses a variety of health-promoting effects in pure and in conjugation with nanoparticles. Since the mRNA-SIRT1/p66Shc pathway and microRNAs (miRNAs) are implicated in the oxidative process, we aimed to compare the effects of QC and QC-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) on this pathway. METHODS: Through the use of the chemical coprecipitation technique (CPT), SPIONs were synthesized, coated with dextran, and conjugated with quercetin. Adult male Wistar rats were given intraperitoneal injections of streptozotocin to look for signs of type 1 diabetes (T1D). The animals were randomized into five groups: the control group got deionized water (DI), free QC solution (25 mg/kg), SPIONs (25 mg/kg), and QCSPIONs (25 mg/kg), and all groups received repeat doses administered orally over 35 days. Real-time quantitative PCR was used to assess the levels of miR-34a, let-7a-p5, SIRT1, p66Shc, CASP3, and PARP1 expression in the hippocampus of diabetic rats. RESULTS: In silico investigations identified p66Shc, CASP3, and PARP1 as targets of let-7a-5p and miR-34a as possible regulators of SIRT1 genes. The outcomes demonstrated that diabetes elevated miR-34a, p66Shc, CASP3, and PARP1 and downregulated let-7a-5p and SIRT1 expression. In contrast to the diabetic group, QCSPIONs boosted let-7a-5p expression levels and consequently lowered p66Shc, CASP3, and PARP1 expression levels. QCSPIONs also reduced miR-34a expression, which led to an upsurge in SIRT1 expression. CONCLUSION: Our results suggest that QCSPIONs can regulate the SIRT1/p66Shc-mediated signaling pathway and can be considered a promising candidate for ameliorating the complications of diabetes.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , MicroRNAs , Ratos , Masculino , Animais , Ratos Wistar , Quercetina/farmacologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Caspase 3/metabolismo , Diabetes Mellitus Experimental/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro
10.
Gynecol Endocrinol ; 39(1): 2250003, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37634527

RESUMO

CONTEXT: Substantial evidence suggests that ovarian oxidative stress can result in severe ovarian dysfunction. OBJECTIVE: The purpose of this article is to investigate the potential of SIRT6 in alleviating premature ovarian failure (POF) by inhibiting oxidative stress. METHODS: To mimic POF, mice were administered daily subcutaneous injections of d-galactose. The levels of E2, FSH, LH, AMH, and progesterone in serum were measured, along with changes in follicles and SIRT6 levels. Mice were treated with the SIRT6 agonist MDL-800, SIRT6 levels, follicles, and aforementioned hormones were reassessed. The effects of MDL-800 on oxidative stress and apoptosis were subsequently identified. Primary granulosa cells were isolated from mice, and the effects of H2O2 and MDL-800 on cell viability, oxidative stress, SIRT6 level, and apoptosis were evaluated. In addition, the regulation of SIRT6 on H3K9AC/p66SHC was verified by examining changes in protein levels, promoter activity, and the reversal effects of p66SHC overexpression. RESULTS: MDL-800 mitigated hormone fluctuations, reduced follicle depletion in ovarian tissue, and attenuated oxidative stress and apoptosis in mice. In vitro experiments demonstrated that MDL-800 enhanced the resilience of primary granulosa cells against H2O2, as evidenced by increased cell viability and reduced oxidative stress and apoptosis. Furthermore, SIRT6 was found to decrease H3K9AC and p66SHC levels, as well as attenuate p66SHC promoter activity. The protective effects of MDL-800 on cells were reversed upon p66SHC overexpression. CONCLUSION: In summary, this study highlights that activation of SIRT6 can alleviate POF and reduce oxidative stress by degrading H3K9AC and suppressing p66Shc levels in granulosa cells.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Sirtuínas , Animais , Feminino , Humanos , Camundongos , Apoptose , Células da Granulosa , Peróxido de Hidrogênio , Estresse Oxidativo , Insuficiência Ovariana Primária/tratamento farmacológico , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
11.
Eur Heart J ; 44(29): 2746-2759, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377116

RESUMO

AIMS: The mechanisms underlying ageing-induced vascular remodelling remain unclear. This study investigates the role and underlying mechanisms of the cytoplasmic deacetylase sirtuin 2 (SIRT2) in ageing-induced vascular remodelling. METHODS AND RESULTS: Transcriptome and quantitative real-time PCR data were used to analyse sirtuin expression. Young and old wild-type and Sirt2 knockout mice were used to explore vascular function and pathological remodelling. RNA-seq, histochemical staining, and biochemical assays were used to evaluate the effects of Sirt2 knockout on the vascular transcriptome and pathological remodelling and explore the underlying biochemical mechanisms. Among the sirtuins, SIRT2 had the highest levels in human and mouse aortas. Sirtuin 2 activity was reduced in aged aortas, and loss of SIRT2 accelerated vascular ageing. In old mice, SIRT2 deficiency aggravated ageing-induced arterial stiffness and constriction-relaxation dysfunction, accompanied by aortic remodelling (thickened vascular medial layers, breakage of elastin fibres, collagen deposition, and inflammation). Transcriptome and biochemical analyses revealed that the ageing-controlling protein p66Shc and metabolism of mitochondrial reactive oxygen species (mROS) contributed to SIRT2 function in vascular ageing. Sirtuin 2 repressed p66Shc activation and mROS production by deacetylating p66Shc at lysine 81. Elimination of reactive oxygen species by MnTBAP repressed the SIRT2 deficiency-mediated aggravation of vascular remodelling and dysfunction in angiotensin II-challenged and aged mice. The SIRT2 coexpression module in aortas was reduced with ageing across species and was a significant predictor of age-related aortic diseases in humans. CONCLUSION: The deacetylase SIRT2 is a response to ageing that delays vascular ageing, and the cytoplasm-mitochondria axis (SIRT2-p66Shc-mROS) is important for vascular ageing. Therefore, SIRT2 may serve as a potential therapeutic target for vascular rejuvenation.


Assuntos
Sirtuína 2 , Remodelação Vascular , Camundongos , Humanos , Animais , Idoso , Sirtuína 2/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento , Camundongos Knockout
12.
Stem Cells Dev ; 32(15-16): 434-449, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183401

RESUMO

The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a p66Shc knockout murine embryonic stem cell (mESC) line. Deletion of p66Shc enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Células-Tronco Embrionárias Murinas , Animais , Camundongos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/farmacologia , Fator Inibidor de Leucemia/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
13.
Int J Med Sci ; 20(4): 455-462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057208

RESUMO

Objective: Obstructive sleep apnea (OSA) is characterized by nocturnal intermittent hypoxemia and linked to oxidative stress. Evidence demonstrated that p66Shc plays a key role in regulating oxidative stress. This study aimed to investigate the expression of p66Shc in peripheral blood mononuclear cells (PBMCs) of patients with OSA and the association with polysomnographic parameters. Methods: Fifty-four OSA subjects and 19 no OSA controls were enrolled in this study. All the subjects underwent standard polysomnography. P66Shc mRNA and protein levels in the PBMCs were detected by quantitative real-time polymerase chain reaction and western blotting. Plasma 3-nitrotyrosine (3-NT), oxidized low density lipoprotein (oxLDL), and advanced oxidation protein products (AOPP) were measured by ELISA method. Results: P66Shc mRNA and protein levels in PBMCs were significantly higher in OSA patients than in controls. P66Shc mRNA was positively correlated with plasma 3-NT, oxLDL, AOPP, hypopnea index (AHI), oxygen desaturation index (ODI), percentage of total sleep time with oxygen saturation (SaO2) below 90% (CT90), epworth sleepiness scale (ESS) and lymphocytes; negatively correlated with lowest SaO2 (LSaO2) and mean SaO2 (MSaO2). Further multivariate linear regression analysis showed that p66Shc mRNA levels were independently associated with AHI, MSaO2 and CT90. Conclusions: Oxidative stress regulator p66Shc may play a role in the pathophysiology of OSA and might serve as a potential biomarker for this disease.


Assuntos
Leucócitos Mononucleares , Apneia Obstrutiva do Sono , Humanos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Leucócitos Mononucleares/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Apneia Obstrutiva do Sono/genética
14.
Biochem Biophys Res Commun ; 656: 63-69, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-36958256

RESUMO

PURPOSE: The aim of this study is to investigate whether p66shc is involved in inflammatory pain and the potential molecular mechanisms of p66shc in inflammatory pain. METHODS: Inflammatory pain model was established by complete Freund's adjuvant (CFA) injection. Paw withdrawal latency (PWL) and paw withdrawal frequency (PWF) was recorded. The expression of spinal p66shc were determined by immunohistochemical staining, immunofluorescence staining. P66shc knockdown was performed by an adeno-associated virus (AAV) vector infusion. NLRP3 inflammasome complexes were determined by Western blot. DHE staining was used to evaluate reactive oxygen species (ROS) generation. RESULTS: P66Shc expression was progressively elevated in spinal cord of inflammatory pain mice, and p66Shc knockdown in vivo significantly attenuated CFA injection triggers hyperalgesia. Furthermore, knockdown of p66Shc significantly inhibited ROS production and NOD-like receptor protein 3 (NLRP3) inflammasome activation, which were reversed by a ROS donor (t-BOOH). However, post-treatment with nigericin, a agonist of NLRP3, reversed AAV-shP66shc analgesic effect. CONCLUSION: Spinal p66shc may facilitate the development of inflammatory pain by promoting the activation of NLRP3 inflammasome through ROS.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Adjuvante de Freund , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Dor/metabolismo , Hiperalgesia/metabolismo , Medula Espinal/metabolismo
15.
J Mol Cell Cardiol ; 177: 21-27, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36827872

RESUMO

The longevity protein p66Shc is essential for the senescence signaling that is involved in heart regeneration and remodeling. However, the exact role of p66Shc in heart regeneration is unknown. In this study, we found that p66Shc deficiency decreased neonatal mouse cardiomyocyte (CM) proliferation and impeded neonatal heart regeneration after apical resection injury. RNA sequencing and functional verification demonstrated that p66Shc regulated CM proliferation by activating ß-catenin signaling. These findings reveal the critical role of p66Shc in neonatal heart regeneration and provide new insights into senescence signaling in heart regeneration.


Assuntos
Transdução de Sinais , Animais , Camundongos , Fosforilação , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
16.
Redox Biol ; 60: 102615, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716673

RESUMO

Disruption of the blood-spinal cord barrier (BSCB) leads to inflammatory cell infiltration and neural cell death, thus, contributing to poor functional recovery after spinal cord injury (SCI). Previous studies have suggested that Sirtuin 1 (SIRT1), an NAD+-dependent class III histone deacetylase, is abundantly expressed in endothelial cells and promotes endothelial homeostasis. However, the role of SIRT1 in BSCB function after SCI remains poorly defined. Here, we report that SIRT1 is highly expressed in spinal cord endothelial cells, and its expression significantly decreases after SCI. Using endothelial cell-specific SIRT1 knockout mice, we observed that endothelial cell-specific knockout of SIRT1 aggravated BSCB disruption, thus, resulting in widespread inflammation, neural cell death and poor functional recovery after SCI. In contrast, activation of SIRT1 by the agonist SRT1720 had beneficial effects. In vitro, knockdown of SIRT1 exacerbated IL-1ß-induced endothelial barrier disruption in bEnd.3 cells, whereas overexpression of SIRT1 was protective. Using RNA-seq and IP/MS analysis, we identified p66Shc, a redox protein, as the potential target of SIRT1. Further studies demonstrated that SIRT1 interacts with and deacetylates p66Shc, thereby attenuating oxidative stress and protecting endothelial barrier function. Overall, our results indicate that SIRT1 decreases endothelial ROS production and attenuates BSCB disruption by deacetylating p66Shc after SCI, and suggest that SIRT1 activation has potential as a therapeutic approach to promote functional recovery against BSCB disruption following SCI.


Assuntos
Sirtuína 1 , Traumatismos da Medula Espinal , Animais , Camundongos , Barreira Hematoencefálica , Células Endoteliais/metabolismo , Camundongos Knockout , Sirtuína 1/genética , Sirtuína 1/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
17.
Curr Med Chem ; 30(6): 744-756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35986536

RESUMO

OBJECTIVE: The objective of this study is to evaluate the regulatory mechanism between P66Shc and ferroptosis in cisplatin-induced acute kidney injury (CP-AKI). METHODS: A CP-AKI model was constructed both in vivo and in vitro using C57BL/6 mice and HK-2 cells, respectively. Renal histopathological injury, reactive oxygen species (ROS), and apoptosis were detected. Some parameters of ferroptosis (e.g. 4HNE and GPX4) and the expression of P66Shc/ P-P66Shc both in mitochondria and cytoplasm were tested. In in vitro studies, HK-2 cells were incubated with CP (50 uM); additionally, Fer1 and P66Shc siRNA were applied to explore the molecular regulatory mechanism of P66Shc in ferroptosis. The levels of mitochondrial ROS, apoptosis and the expression of 4HNE,GPX4, P66Shc, and P-P66Shc were tested. Furthermore, the mitochondrial translocation of P66Shc was detected. RESULTS: CP treatment caused elevation of Scr, BUN and renal MDA levels and decreased renal SOD, GSH-PX and GPX4 levels. CP enhanced the expression of 4HNE, P66Shc and P-P66Shc both in vivo and in vitro. Renal oxidative stress and apoptosis were significantly increased in CP-AKI mice. Electron microscopy examination indicated obvious mitochondria injury in renal tubular cells of CP-AKI mice. The level of ferroptosis and the translocation of P-P66Shc from the cytoplasm to mitochondria were significantly increased in HK-2 cells under CP condition, and these effects were obviously blocked by P66Shc siRNA treatment. Conversely, pretreatment with the ferroptosis inhibitor (Fer1) had no effect on the expression and mitochondria translocation of PP66Shc under CP condition. CONCLUSION: Mitochondrial translocation of P66Shc could result in mitochondrial injury and lipid peroxide accumulation, which ultimately led to ferroptosis and aggravated CPinduced AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Ferroptose , Proteínas Adaptadoras da Sinalização Shc , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Linhagem Celular , Cisplatino/toxicidade , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
18.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203279

RESUMO

Diabetes mellitus is a chronic metabolic disease, the prevalence of which is constantly increasing worldwide. It is often burdened by disabling comorbidities that reduce the quality and expectancy of life of the affected individuals. The traditional complications of diabetes are generally described as macrovascular complications (e.g., coronary heart disease, peripheral arterial disease, and stroke), and microvascular complications (e.g., diabetic kidney disease, retinopathy, and neuropathy). Recently, due to advances in diabetes management and the increased life expectancy of diabetic patients, a strong correlation between diabetes and other pathological conditions (such as liver diseases, cancer, neurodegenerative diseases, cognitive impairments, and sleep disorders) has emerged. Therefore, these comorbidities have been proposed as emerging complications of diabetes. P66Shc is a redox protein that plays a role in oxidative stress, apoptosis, glucose metabolism, and cellular aging. It can be regulated by various stressful stimuli typical of the diabetic milieu and is involved in various types of organ and tissue damage under diabetic conditions. Although its role in the pathogenesis of diabetes remains controversial, there is strong evidence regarding the involvement of p66Shc in the traditional complications of diabetes. In this review, we will summarize the evidence supporting the role of p66Shc in the pathogenesis of diabetes and its complications, focusing for the first time on the emerging complications of diabetes.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Doença Arterial Periférica , Humanos , Apoptose , Senescência Celular , Oxirredução
19.
J Cardiovasc Dev Dis ; 9(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36354784

RESUMO

Reactive oxygen species (ROS) dysregulation exacerbates many pathologies but must remain within normal ranges to maintain cell function. Since ROS-mediated pathology and routine cell function are coupled, in vivo models evaluating low-ROS background effects on pathology are limited. Some models alter enzymatic antioxidant expression/activity, while others involve small molecule antioxidant administration. These models cause non-specific ROS neutralization, decreasing both beneficial and detrimental ROS. This is detrimental in cardiovascular pathology, despite the negative effects excessive ROS has on these pathologies. Thus, current trends in ROS-mediated pathology have shifted toward selective inhibition of ROS producers that are dysregulated during pathological insults, such as p66Shc. In this study, we evaluated a zebrafish heterozygote p66Shc hypomorphic mutant line as a low-ROS myocardial infarction (MI) pathology model that mimics mammalian MI. Our findings suggest this zebrafish line does not have an associated negative phenotype, but has decreased body mass and tissue ROS levels that confer protection against ROS-mediated pathology. Therefore, this line may provide a low-ROS background leading to new insights into disease.

20.
Free Radic Biol Med ; 193(Pt 1): 274-291, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265795

RESUMO

The castration-resistant (CR) prostate cancer (PCa) is lethal and is the second leading cause of cancer-related deaths in U.S. males. To develop effective treatments toward CR PCa, we investigated reactive oxygen species (ROS) signaling pathway for its role involving in CR PCa progression. ROS can regulate both cell growth and apoptosis: a moderate increase of ROS promotes proliferation; its substantial rise results in cell death. p66Shc protein can increase oxidant species production and its elevated level is associated with the androgen-independent (AI) phenotype of CR PCa cells; while heme oxygenase-1 (HO-1) is an antioxidant enzyme and elevated in a sub-group of metastatic PCa cells. In this study, our data revealed that HO-1 and p66Shc protein levels are co-elevated in various AI PCa cell lines as well as p66Shc cDNA-transfected cells. Knockdown and/or inhibition of either p66Shc or HO-1 protein leads to reduced tumorigenicity as well as a reduction of counterpart protein. Knockdown of HO-1 alone results in increased ROS levels, nucleotide and protein oxidation and induction of cell death. Together, our data indicate that elevated HO-1 protein levels protect PCa cells from otherwise apoptotic conditions induced by aberrant p66Shc/ROS production, which thereby promotes PCa progression to the CR phenotype. p66Shc and HO-1 can serve as functional targets for treating CR PCa.


Assuntos
Heme Oxigenase-1 , Neoplasias da Próstata , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Humanos , Masculino , Antioxidantes/metabolismo , Heme Oxigenase-1/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...