Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Ethnopharmacol ; 336: 118699, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181290

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a serious health-threatening syndrome of intense inflammatory response in the lungs, with progression leading to acute respiratory distress syndrome (ARDS). Dachengqi decoction dispensing granule (DDG) has a pulmonary protective role, but its potential modulatory mechanism to alleviate ALI needs further excavation. AIM OF THE STUDY: This study aims to investigate the effect and potential mechanism of DDG on lipopolysaccharide (LPS)-induced ALI models in vivo and in vitro. MATERIALS AND METHODS: LPS-treated Balb/c mice and BEAS-2B cells were used to construct in vivo and in vitro ALI models, respectively. Hematoxylin-eosin (HE), Wet weight/Dry weight (W/D) calculation of lung tissue, and total protein and Lactic dehydrogenase (LDH) assays in BALF were performed to assess the extent of lung tissue injury and pulmonary edema. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) in BALF, serum, and cell supernatant. The qRT-PCR was used to detect inflammatory factors, Z-DNA binding protein 1 (ZBP1), and receptor-interacting protein kinase 1 (RIPK1) expression in lung tissues and BEAS-2B cells. Double immunofluorescence staining and co-immunoprecipitation were used to detect the relative expression and co-localization of ZBP1 and RIPK1. The effects of LPS and DDG on BEAS-2B cell activity were detected by Cell Counting Kit-8 (CCK-8). Western blot (WB) was performed to analyze the expression of PANoptosis-related proteins in lung tissues and BEAS-2B cells. RESULTS: In vivo, DDG pretreatment could dose-dependently improve the pathological changes of lung tissue in ALI mice, and reduce the W/D ratio of lung, total protein concentration, and LDH content in BALF. In vitro, DDG reversed the inhibitory effect of LPS on BEAS-2B cell viability. Meanwhile, DDG significantly reduced the levels of inflammatory factors in vitro and in vivo. In addition, DDG could inhibit the expression levels of PANoptosis-related proteins, especially the upstream key regulatory molecules ZBP1 and RIPK1. CONCLUSION: DDG could inhibit excessive inflammation and PANoptosis to alleviate LPS-induced ALI, thus possessing good anti-inflammatory and lung-protective effects. This study establishes a theoretical basis for the further development of DDG and provides a new prospect for ALI treatment by targeting PANoptosis.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/toxicidade , Humanos , Masculino , Camundongos , Linhagem Celular , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Líquido da Lavagem Broncoalveolar/química , Extratos Vegetais/farmacologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
J Ethnopharmacol ; 336: 118740, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39197800

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In accordance with the tenets of traditional Chinese medicine, sepsis is categorized into three distinct syndromes: heat syndrome, blood stasis syndrome, and deficiency syndrome. Xiaochaihu decoction (XCHD) has many functions, including the capacity to protect the liver, cholagogue, antipyretic, anti-inflammatory, and anti-pathogenic microorganisms. XCHD exerts the effect of clearing heat and reconciling Shaoyang. The XCHD contains many efficacious active ingredients, yet the mechanism of sepsis-induced cardiomyopathy (SIC) remains elusive. AIM OF THE STUDY: To investigate the molecular mechanisms underlying the protective effects of XCHD against SIC using an integrated approach combining network pharmacology and molecular biology techniques. MATERIALS AND METHODS: Network pharmacology methods identified the active ingredients, target proteins, and pathways affected by XCHD in the context of SIC. We conducted in vivo experiments using mice with lipopolysaccharide-induced SIC, evaluating cardiac function through echocardiography and histology. XCHD-containing serum was analyzed to determine its principal active components using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The effects of XCHD-containing serum on SIC were further tested in vitro in LPS-treated H9c2 cardiac cells. Protein expression levels were quantified via Western blotting and enzyme-linked immunosorbent assay (ELISA). Additionally, molecular docking was performed between the active components and ZBP1, a potential target protein. Overexpression of ZBP1 in H9c2 cells allowed for a deeper exploration of its role in modulating SIC-associated gene expression. RESULTS: UPLC-MS/MS identified 31 shared XCHD and XCHD-containing serum components. These included organic acids, terpenoids, and flavonoids, which have been identified as the active components of XCHD. Our findings revealed that XCHD alleviated LPS-induced myocardial injury, improved cardiac function, and preserved cardiomyocyte morphology in mice. In vitro studies, we demonstrated that XCHD-containing serum significantly suppressed the expression of inflammatory cytokines (IL-6, IL-1ß, and TNF-α) in LPS-induced H9c2 cells. Mechanistic investigations showed that XCHD downregulated genes associated with PANoptosis, a novel cell death pathway, suggesting its protective role in sepsis-damaged hearts. Conversely, overexpression of ZBP1 abolished the protective effects of XCHD and amplified PANoptosis-related gene expression. CONCLUSIONS: Our study provides the first evidence supporting the protective effects of XCHD against SIC, both in vitro and in vivo. The underlying mechanism involves the inhibition of ZBP1-initiated PANoptosis, offering new insights into treating SIC using XCHD.


Assuntos
Cardiomiopatias , Medicamentos de Ervas Chinesas , Sepse , Animais , Medicamentos de Ervas Chinesas/farmacologia , Sepse/tratamento farmacológico , Sepse/complicações , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Camundongos , Masculino , Linhagem Celular , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Lipopolissacarídeos/toxicidade , Farmacologia em Rede , Ratos , Modelos Animais de Doenças , Espectrometria de Massas em Tandem
3.
Immunol Rev ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351983

RESUMO

Inflammasomes are multi-protein complexes that assemble within the cytoplasm of mammalian cells in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), driving the secretion of the pro-inflammatory cytokines IL-1ß and IL-18, and pyroptosis. The best-characterized inflammasome complexes are the NLRP3, NAIP-NLRC4, NLRP1, AIM2, and Pyrin canonical caspase-1-containing inflammasomes, and the caspase-11 non-canonical inflammasome. Newer inflammasome sensor proteins have been identified, including NLRP6, NLRP7, NLRP9, NLRP10, NLRP11, NLRP12, CARD8, and MxA. These inflammasome sensors can sense PAMPs from bacteria, viruses and protozoa, or DAMPs in the form of mitochondrial damage, ROS, stress and heme. The mechanisms of action, physiological relevance, consequences in human diseases, and avenues for therapeutic intervention for these novel inflammasomes are beginning to be realized. Here, we discuss these emerging inflammasome complexes and their putative activation mechanisms, molecular and signaling pathways, and physiological roles in health and disease.

4.
Chem Biol Interact ; 403: 111258, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362619

RESUMO

Silicon dioxide (SiO2) particles are novel materials with wide-ranging applications across various fields, posing potential neurotoxic effects. This study investigates the toxicological mechanisms of SiO2 particles of different sizes on murine cerebellar tissue and cells. Six-week-old C57BL/6 mice were orally administered SiO2 particles of three sizes (1 µm, 300 nm, 50 nm) for 21 days to establish an in vivo model, and mice cerebellar astrocytes (C8-D1A cells) were cultured in vitro. Indicators of oxidative stress, DNA damage, and the PANoptosis pathway were detected using methods such as immunofluorescence staining, comet assay, western blotting, and qRT-PCR. The results show that SiO2 particles induce oxidative stress leading to DNA oxidative damage. The aberrant DNA is recognized by AIM2 (absent in melanoma 2), which activates the assembly of the PANoptosome complex, subsequently triggering PANoptosis. Furthermore, the extent of damage is inversely correlated with the size of SiO2 particles. This study elucidates the toxicological mechanism of SiO2 particles causing cerebellar damage via PANoptosis, extending research on PANoptosis in neurotoxicology, and aiding in the formulation of stricter safety standards and protective measures to reduce the potential toxic risk of SiO2 particles to humans.

5.
Cell Mol Biol Lett ; 29(1): 130, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379817

RESUMO

Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.


Assuntos
Caspase 8 , Inflamação , Caspase 8/metabolismo , Caspase 8/genética , Humanos , Animais , Piroptose , Necroptose/genética , Apoptose , Neoplasias/enzimologia , Inflamassomos/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética
6.
Gene ; : 148995, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39393431

RESUMO

Programmed cell death (PCD) pathways play pivotal roles in the development and progression of peripheral nerve injury (PNI). PANoptosis, as a novel form of PCD pathway with key features of pyroptosis, apoptosis and necroptosis, is implicated in the pathogenesis of multiple neurologic diseases. This study aimed to identify PANoptosisrelated biomarkers and characterize their molecular roles and immune landscape in PNI. PANoptosis-related genes (PRGs) were retrieved from Reactome pathway database and previous literatures. Differentially expressed PANoptosis-related genes (DEPRGs) were identified based on a time-series transcriptome sequencing dataset. DEPRGs were predicted to be enriched in inflammatory response, inflammatory complex, PCD and NOD-like receptor signaling pathway through GO, KEGG, Reactome and GSEA analysis. Hub genes, including Ripk3, Pycard and Il18, were then recognized through PPI network and multiple algorithms. The molecular regulatory mechanisms of hub genes were elucidated by transcription factor network and competing endogenous RNA network. Moreover, the immune cell landscape of hub genes was analyzed. Eventually, the expression levels of hub genes were verified through external dataset and animal model. Ripk3, Pycard and Il18 were remarkably upregulated in PNI samples, which were in consistent with the results of bioinformatic analysis. This study uncovered the molecular characterization of PANoptosis-related genes in PNI and illustrated the novel PANoptosis biomarker for PNI.

7.
Sci Rep ; 14(1): 23851, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394418

RESUMO

Alzheimer's Disease (AD) is a neurodegenerative disorder, and various molecules associated with PANoptosis are involved in neuroinflammation and neurodegenerative diseases. This work aims to identify key genes, and characterize PANoptosis-related molecular subtypes in AD. Moreover, we establish a scoring system for distinguishing PANoptosis molecular subtypes and constructing diagnostic models for AD differentiation. A total of 5 hippocampal datasets were obtained from the Gene Expression Omnibus (GEO) database. In total, 1324 protein-encoding genes associated with PANoptosis (1313 apoptosis genes, 11 necroptosis genes, and 31 pyroptosis genes) were extracted from the GeneCards database. The Limma package was used to identify differentially expressed genes. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify gene modules significantly associated with AD. The ConsensusClusterPlus algorithm was used to identify AD subtypes. Gene Set Variation Analysis (GSVA) was used to assess functional and pathway differences among the subtypes. The Boruta, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to select the three PANoptosis-related Key AD genes (PKADg). A scoring model was constructed based on the Boruta algorithm. PANoptosis diagnostic models were developed using the RF, SVM-RFE, and Logistic Regression (LR) algorithms. The ROC curves were used to assess the model performance. A total of 48 important genes were identified by intersecting 725 differentially expressed genes and 2127 highly correlated module genes from WGCNA with 1324 protein-encoding genes related to PANoptosis. Machine learning algorithms identified 3 key AD genes related to PANoptosis, including ANGPT1, STEAP3, and TNFRSF11B. These genes had strong discriminatory capacities among samples, with Receiver Operating Characteristic Curve (ROC) analysis indicating Area Under the Curve (AUC) values of 0.839, 0.8, and 0.868, respectively. Using the 48 important genes, the ConsensusClusterPlus algorithm identified 2 PANoptosis subtypes among AD patients, i.e., apoptosis subtype and mild subtype. Apoptosis subtype patients displayed evident cellular apoptosis and severe functionality damage in the hippocampal tissue. Meanwhile, mild subtype patients showed milder functionality damage. These two subtypes had significant differences in apoptosis and necroptosis; however, there was no apparent variation in pyroptosis functionality. The scoring model achieved an AUC of 100% for sample differentiation. The RF PANoptosis diagnostic model demonstrated an AUC of 100% in the training set and 85.85% in the validation set for distinguishing AD. This study identified two PANoptosis-related hippocampal molecular subtypes of AD, identified key genes, and established machine learning models for subtype differentiation and discrimination of AD. We found that in the context of AD, PANoptosis may influence disease progression through the modulation of apoptosis and necrotic apoptosis.


Assuntos
Doença de Alzheimer , Biomarcadores , Hipocampo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Humanos , Hipocampo/metabolismo , Hipocampo/patologia , Biomarcadores/metabolismo , Necroptose/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Algoritmos , Bases de Dados Genéticas , Curva ROC , Apoptose/genética
8.
Acta Pharmacol Sin ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223367

RESUMO

PANoptosis is an emerging form of regulated cell death (RCD) characterized by simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling that not only participates in pathologies of inflammatory diseases but also has a critical role against pathogenic infections. Targeting PANoptosis represents a promising therapeutic strategy for related inflammatory diseases, but identification of inhibitors for PANoptosis remains an unmet demand. Baicalin () is an active flavonoid isolated from Scutellaria baicalensis Georgi (Huangqin), a traditional Chinese medicinal herb used for heat-clearing and detoxifying. Numerous studies suggest that baicalin possesses inhibitory activities on various forms of RCD including apoptosis/secondary necrosis, pyroptosis, and necroptosis, thereby mitigating inflammatory responses. In this study we investigated the effects of baicalin on PANoptosis in macrophage cellular models. Primary macrophages (BMDMs) or J774A.1 macrophage cells were treated with 5Z-7-oxozeaenol (OXO, an inhibitor for TAK1) in combination with TNF-α or LPS. We showed that OXO plus TNF-α or LPS induced robust lytic cell death, which was dose-dependently inhibited by baicalin (50-200 µM). We demonstrated that PANoptosis induction was accompanied by overt mitochondrial injury, mitochondrial DNA (mtDNA) release and Z-DNA formation. Z-DNA was formed from cytosolic oxidized mtDNA. Both oxidized mtDNA and mitochondrial Z-DNA puncta were co-localized with the PANoptosome (including ZBP1, RIPK3, ASC, and caspase-8), a platform for mediating PANoptosis. Intriguingly, baicalin not only prevented mitochondrial injury but also blocked mtDNA release, Z-DNA formation and PANoptosome assembly. Knockdown of ZBP1 markedly decreased PANoptotic cell death. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), administration of baicalin (200 mg/kg, i.g., for 4 times) significantly mitigated lung and liver injury and reduced levels of serum TNF-α and IFN-γ, concomitant with decreased levels of PANoptosis hallmarks in these organs. Baicalin also abrogated the hallmarks of PANoptosis in liver-resident macrophages (Kupffer cells) in HLH mice. Collectively, our results demonstrate that baicalin inhibits PANoptosis in macrophages by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly, thus conferring protection against inflammatory diseases. PANoptosis is a form of regulated cell death displaying simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling. This study shows that induction of PANoptosis is linked to mitochondrial dysfunction and mitochondrial Z-DNA formation. Baicalin inhibits PANoptosis in macrophages in vitro via blocking mitochondrial dysfunction and the mitochondrial Z-DNA formation and thereby impeding the assembly of ZBP1-associated PANoptosome. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), baicalin inhibits the activation of PANoptotic signaling in liver-resident macrophages (Kupffer cells) in vivo, thus mitigating systemic inflammation and multiple organ injury in mice.

9.
Adv Mater ; : e2409618, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225412

RESUMO

Addressing the inefficiency of current therapeutic approaches for hepatocellular carcinoma is an urgent and pressing challenge. PANoptosis, a form of inflammatory programmed cell death, presents a dependable strategy for combating cancer by engaging multiple cell death pathways (apoptosis, pyroptosis, and necroptosis). In this study, an ultrasmall Bi2Sn2O7 nanozyme with ultrasound-magnified multienzyme-mimicking properties is designed and engineered as a PANoptosis inducer through destroying the mitochondrial function of tumor cells and enhancing the intracellular accumulation of toxic reactive oxygen species, finally triggering the activation of PANoptosis process. The role of PANoptosis inducer has been verified by the expression of related proteins, including cleaved Caspase 3, NLRP3, N-GSDMD, cleaved Caspase 1, p-MLKL, and RIPK3. The inclusion of external ultrasonic irradiation significantly augments the enzyodynamic therapeutic efficiency. In vitro and in vivo antineoplastic efficacy, along with inhibition of lung metastasis, validate the benefits of the Bi2Sn2O7-mediated PANoptosis pathway. This study not only elucidates the intricate mechanisms underlying Bi2Sn2O7 as a PANoptosis inducer, but also offers a novel perspective for the treatment of hepatocellular carcinoma.

10.
Pestic Biochem Physiol ; 204: 106064, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277381

RESUMO

Environmental pollution caused by arsenic or its compounds is called arsenic pollution. Arsenic pollution mainly comes from people's mining and smelting of arsenic compounds. In addition, the widespread use of arsenic compounds, such as the use and production of arsenic-containing pesticides, is also a source of arsenic contamination. Arsenic contamination leads to an increased risk of arsenic exposure, and the multi-organ toxicity induced by arsenic exposure is a global health problem. As a non-mammalian vertebrate with high nutrient levels, chickens readily absorb and accumulate arsenic from their food. Relevant studies have shown that arsenic exposure induces hepatotoxicity in chickens, and there has been a steady stream of research into the specific mechanisms involved. PANoptosis, a newly discovered and unique mode of programmed cell death (PCD) characterized by both apoptosis, cellular pyroptosis, and necroptosis. There are no studies to indicate whether chicken liver toxicity due to arsenic is associated with PANoptosis. Therefore, we established chicken animal models and chicken primary hepatocyte models exposed to different arsenic concentrations to dissect the role and mechanism of PANoptosis in arsenic exposure-induced hepatotoxicity in chickens. Our histopathological results showed that arsenic treatment caused dose-dependent damage to chicken liver structure. Meanwhile, different doses of arsenic treatment groups caused significant up-regulation of the protein level of ZBP1, a key factor of PANoptosis. And then consequently triggered the abnormal gene and protein expression levels of apoptosis-associated factors (Caspase-8, Caspase-7, Caspase-3), cellular pyroptosis-associated factors (NLRP3, ASC, GSDMD) and necroptosis-associated factors (RIPK1, RIPK3, MLKL). In conclusion, our study revealed that PANoptosis is involved in arsenic-induced chicken hepatotoxicity. Our findings provide a new perspective on the pathogenesis of arsenic exposure-induced hepatotoxicity in chickens.


Assuntos
Arsênio , Galinhas , Fígado , Animais , Arsênio/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Necroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos
11.
Adv Healthc Mater ; : e2401697, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235389

RESUMO

Sonodynamic therapy (SDT) represents a promising, noninvasive, and precise treatment modality for tumors, demonstrating significant potential in clinical applications. However, the efficiency of sonosensitizers in generating reactive oxygen species (ROS) is often limited by rapid electron-hole recombination. In this study, BiF3@BiOI is synthesized via a co-precipitation method, followed by in-situ reduction to decorate it with Pt nanoparticles, resulting in BiF3@BiOI@Pt-PVP (BBP) nanocomposite for enhancing SDT efficacy. The formation of the BiF3@BiOI heterojunction enhances charge separation ability. The decoration of Pt nanoparticles narrows the bandgap and alters the band positions and Fermi level of BBP, which can effectively mitigate the rapid recombination of electron-hole pairs and facilitate a cascade reaction of ROS, thereby improving ROS generation efficiency with ultrasound excitation. Additionally, bismuth ions in BBP and the generated holes consume glutathione, exacerbating cellular oxidative damage, and triggering PANoptosis and ferroptosis. Furthermore, Pt nanoparticles demonstrate peroxidase-like activity, catalyzing endogenous hydrogen peroxide to oxygen. These functions are helpful against tumors for alleviating hypoxic conditions, reshaping the microenvironment, modulating immune cell infiltration capacity, and enhancing the efficacy of immunotherapy. The dual strategy of forming heterojunctions and sensitization with noble metals effectively enhances the efficacy of sono-catalytic therapy-induced immune activation in tumor treatment.

12.
Mol Biol Rep ; 51(1): 960, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235684

RESUMO

PANoptosis, a burgeoning area of research, is a unique type of programmed cell death typified by pyroptosis, apoptosis, and necroptosis, yet it defies singular classification by any one mode of death. The assembly and activation of PANoptosomes are pivotal processes in PANoptosis, with several PANoptosomes already identified. Linkages between PANoptosis and the pathophysiology of various systemic illnesses are established, with increasing recognition of its association with oral ailments. This paper aims to deepen understanding by conducting a comprehensive analysis of the molecular pathways driving PANoptosis and exploring its potential implications in oral diseases.


Assuntos
Doenças da Boca , Necroptose , Piroptose , Humanos , Doenças da Boca/patologia , Necroptose/genética , Apoptose/genética , Animais
13.
Sci Rep ; 14(1): 20672, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237645

RESUMO

PANoptosis induces programmed cell death (PCD) through extensive crosstalk and is associated with development of cancer. However, the functional mechanisms, clinical significance, and potential applications of PANoptosis-related genes (PRGs) in colorectal cancer (CRC) have not been fully elucidated. Functional enrichment of key PRGs was analyzed based on databases, and relationships between key PRGs and the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, signal transduction pathways, transcription factor regulation, and miRNA regulatory networks were systematically explored. This study identified 5 key PRGs associated with CRC: BCL10, CDKN2A, DAPK1, PYGM and TIMP1. Then, RT-PCR was used to verify expression of these genes in CRC cells and tissues. Clinical significance and prognostic value of key genes were further verified by multiple datasets. Analyses of the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, and signal transduction pathways suggest a close relationship between these key genes and development of CRC. In addition, a novel prognostic nomogram model for CRC was successfully constructed by combining important clinical indicators and the key genes. In conclusion, our findings offer new insights for understanding the pathogenesis of CRC, predicting CRC prognosis, and identifying multiple therapeutic targets for future CRC therapy.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Microambiente Tumoral/genética , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Prognóstico , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Carcinogênese/genética , Redes Reguladoras de Genes , Transdução de Sinais , Biomarcadores Tumorais/genética , MicroRNAs/genética , Nomogramas
14.
Curr Med Chem ; 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39248067

RESUMO

BACKGROUND: The PANoptosis pathway is a recently identified mechanism of cellular death that involves the interaction and synchronization among cellular pyroptosis, apoptosis, and necrosis. More and more evidence suggests that PANoptosis is involved in the development and treatment of cancer. However, a comprehensive understanding of the influence of PANoptosis genes on prognostic value, tumor microenvironment characteristics, and therapeutic outcomes in patients with ovarian cancer (OC) remains incomplete. OBJECTIVE: The present work was designed to devise a PANoptosis signature for OC prognosis and explore its potential molecular function. METHODS: For this study, we obtained RNA sequencing and clinical data for ovarian cancer from the Cancer Genome Atlas (TCGA) and the GSE32062 cohort. Somatic variants of PANoptosis-related genes (PRGs) in OC were analyzed using GSCA. TCGA-OC and GSE32062 were used to construct training and validation cohorts for the model. Differential expression and correlation analyses were performed following the screening of genes with prognostic ability using univariate Cox analysis. Least Absolute Shrinkage nd Selection Operator (LASSO) regression was performed to construct PRG signature based on genes that were differentially expressed and correlated with prognosis. CIBER-SORT and ESTIMATE were used to analyze the relationship between the PRGs signature and immune infiltration. TIDE was used to analyze the relationship between the PRG signature and immune checkpoint genes. OncoPredict was used to analyze the relationship between the PRG signature and the drug sensitivity. Quantitative real-time PCR (qRT-PCR) was used to validate the expression of PRGs in OC. RESULTS: The PRG signature was constructed using three prognostic genes (AIM2, APAF1, and ZBP1) in both TCGA-OC. The results showed that the PRGs signature had an AUC of 0.521, 0.546, and 0.598 in TCGA-OC and 0.620, 0.586, and 0.579 in GSE32062 to predict to predict OS at 1-, 3-, and 5-year intervals. Furthermore, a higher PRG signature risk score was significantly associated with shorter OS (HR = 1.693, 95% CI: 1.303 - 2.202, p = 8.34 × 10^-5 in TCGA-OC and HR = 1.63, 95% CI: 1.13 - 2.35, p = 0.009 in GSE32062). The risk score was identified as the independent prognostic factor for OC. Patients categorized according to their risk score exhibited notable variations in immune status, response to immunotherapy, and sensitivity to drugs. AIM2, APAF1, and ZBP1 were significantly aberrantly expressed in OC cell lines. CONCLUSION: The PRG signature has the potential to serve as a prognostic predictor for OC and to provide new insights into OC treatment.

15.
Sci Rep ; 14(1): 20934, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251701

RESUMO

Lung adenocarcinoma (LUAD) is the dominant histotype of non-small cell lung cancer. Panoptosis, a comprehensive form of programmed cell death, is central to carcinogenesis. In this study, the expression of PANoptosis-related genes (PRGs) and their impact on the development, prognosis, tumor microenvironment, and treatment response of patients with lung adenocarcinoma (LUAD) were systematically evaluated. PRGs were selected from The Cancer Genome Atlas database and Genecards dataset using differential expression analysis. The signature of included PRGs was identified using univariate Cox regression analysis and LASSO regression analysis. Additionally, a nomogram was developed that includes signature and clinical information. Kaplan-Meier survival analysis and receiver operating characteristic curves were used to assess the predictive validity of these risk models. Finally, functional analysis of the selected PRGs in signature and analysis of immune landscape were also performed. Preliminary identification of 10 genes related to PANoptosis has significant implications for prognosis. Subsequently, seven related genes were integrated to classify LUAD patients into different survival risk groups. The prognostic risk score generated from the signature and the TNM stage were as independent prognostic factors and were utilized in creating a nomogram plot. Both the features and the nomogram plot showed accurate performance in predicting the overall survival of LUAD patients. The PRGs were enriched in several biological functions and pathways, and stratified studies were conducted on the differences in immune landscape between high-risk and low-risk groups based on their characteristics. Ultimately, our evaluation focused on the differences in drug treatment efficacy between the high-risk and low-risk groups, providing a foundation for future research directions. Potential associations between PRGs and patient prognosis in LUAD have been identified in this study. Potential biomarkers for clinical application could be considered for the prognostic predictors identified in this study.


Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/diagnóstico , Prognóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Biomarcadores Tumorais/genética , Masculino , Feminino , Nomogramas , Microambiente Tumoral/genética , Perfilação da Expressão Gênica , Estimativa de Kaplan-Meier , Curva ROC , Pessoa de Meia-Idade
16.
Artigo em Inglês | MEDLINE | ID: mdl-39269827

RESUMO

Regulated cell death, including pyroptosis, apoptosis, and necroptosis, is vital for the body's defense system. Recent research suggests that these three types of cell death are interconnected, giving rise to a new concept called PANoptosis. PANoptosis has been linked to various diseases, making it crucial to comprehend its mechanism for effective treatments. PANoptosis is controlled by upstream receptors and molecular signals, which form polymeric complexes known as PANoptosomes. Cell death combines necroptosis, apoptosis, and pyroptosis and cannot be fully explained by any of these processes alone. Understanding pyroptosis, apoptosis, and necroptosis is essential for understanding PANoptosis. Physical exercise has been shown to suppress pyroptotic, apoptotic, and necroptotic signaling pathways by reducing inflammatory factors, proapoptotic factors, and necroptotic factors such as caspases and TNF-alpha. This ultimately leads to a decrease in cardiac structural remodeling. The beneficial effects of exercise on cardiovascular health may be attributed to its ability to inhibit these cell death pathways.

17.
Exp Cell Res ; 442(2): 114247, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276965

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a devastating macrovascular disease, and its pathogenic mechanisms have not been well clarified. This study aimed to investigate the role of PANoptosis, which is newly defined programmed cell death (PCD) and characterized by pyroptosis, apoptosis, and necroptosis, in the pathogenesis of TAAD. We found that the expression of initiator factor Z-DNA binding protein 1 (ZBP1) and PANoptosis-related genes were upregulated in the ß-aminopropionitrile (BAPN) + Angiotensin II (Ang II)-induced TAAD mice. Ang II stimuli enhanced the expression of ZBP1, promoted the generation of bioactive GSDMD (Gasdermin D) fragments, the cleavage of Caspase 3, and increased the phosphorylation of mixed lineage kinase domain-like pseudokinase (MLKL) in human aortic vascular smooth muscle cells (HASMCs), indicating the activation of hallmarks for PANoptosis. Moreover, ZBP1-mediated PANoptosis occurs in the aortic tissues of TAAD patients. These results highlight the significant role of PANoptosis in TAAD pathogenesis, suggesting ZBP1 and other PANoptosis-related genes as potential therapeutic targets for this condition.

18.
Front Aging Neurosci ; 16: 1430290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258145

RESUMO

Background and objectives: Periodontitis (PD), a chronic inflammatory disease, is a serious threat to oral health and is one of the risk factors for Alzheimer's disease (AD). A growing body of evidence suggests that the two diseases are closely related. However, current studies have not provided a comprehensive understanding of the common genes and common mechanisms between PD and AD. This study aimed to screen the crosstalk genes of PD and AD and the potential relationship between cross-talk and PANoptosis-related genes. The relationship between core genes and immune cells will be analyzed to provide new targets for clinical treatment. Materials and methods: The PD and AD datasets were downloaded from the GEO database and differential expression analysis was performed to obtain DEGs. Overlapping DEGs had cross-talk genes linking PD and OP, and PANoptosis-related genes were obtained from a literature review. Pearson coefficients were used to compute cross-talk and PANoptosis-related gene correlations in the PD and AD datasets. Cross-talk genes were obtained from the intersection of PD and AD-related genes, protein-protein interaction(PPI) networks were constructed and cross-talk genes were identified using the STRING database. The intersection of cross-talk and PANoptosis-related genes was defined as cross-talk-PANoptosis genes. Core genes were screened using ROC analysis and XGBoost. PPI subnetwork, gene-biological process, and gene-pathway networks were constructed based on the core genes. In addition, immune infiltration on the PD and AD datasets was analyzed using the CIBERSORT algorithm. Results: 366 cross-talk genes were overlapping between PD DEGs and AD DEGs. The intersection of cross-talk genes with 109 PANoptosis-related genes was defined as cross-talk-PANoptosis genes. ROC and XGBoost showed that MLKL, DCN, IL1B, and IL18 were more accurate than the other cross-talk-PANoptosis genes in predicting the disease, as well as better in overall characterization. GO and KEGG analyses showed that the four core genes were involved in immunity and inflammation in the organism. Immune infiltration analysis showed that B cells naive, Plasma cells, and T cells gamma delta were significantly differentially expressed in patients with PD and AD compared with the normal group. Finally, 10 drugs associated with core genes were retrieved from the DGIDB database. Conclusion: This study reveals the joint mechanism between PD and AD associated with PANoptosis. Analyzing the four core genes and immune cells may provide new therapeutic directions for the pathogenesis of PD combined with AD.

19.
Sci Rep ; 14(1): 22517, 2024 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342037

RESUMO

PANoptosis is engaged in the program of immune response and carcinogenicity. Nonetheless, the actual impacts of PANoptosis on clinical management and oncology immunity in hepatocellular carcinoma (HCC) are not fully grasped. RNA-seq-derived computations were conducted to sort out the molecular subtypes and elucidate the disparities based on PANoptosis molecules. Single-cell sequencing (scRNA-seq) tools including Cytotrace and Addmodulescore were extracted to characterize diversification potency and quantify the PANoptosis motion. Transcriptional factors were inferred by the pySCENIC package and Cellchat program scrutinized the intercellular exchange across cell compartments. The PANoptosis score system originated by incorporating 10 machine learning algorithms and 101 compositions to project clinical results and deteriorate tendencies. Circulatory PANoptosis-associated protein HSP90AA1 was determined by enzyme-linked immunosorbent assay (ELISA). HCC individuals could be categorized into low- and high-PANoptosis groups with diverse biogenic and pharmacotherapy heterogeneity. Individuals in the elevated PANoptosis subtype were characterized as "hot tumor" conveying the increased presence of immunogenicity while reiterating an explicit negative connection with tumor stemness. Compared to immune and stromal cells, cancerous cells showcased decreased PANoptosis and heightened PANoptosis malignant cell subgroups might be tied to a substantial level of genomic expression of SREBF2, JUND, GATAD1, ZBTB20, SMAD5 and implied a more aggressive potential. The PANoptosis index, derived from machine learning, has been established to provide succinct frameworks for predicting outcomes and clarified the noteworthy utility of conventional regimens, as the differentiated power of HCC occurred together with vascular invasion and hepatocellular adenoma (HCA). The experiment confirmed that the circulating HSP90AA1 was aberrantly augmented in HCC patients, thus demonstrating its potential as a discriminatory biomarker. We systematically deciphered the molecular and immune ecosystem traits of PANoptosis in bulk and scRNA-seq degrees, which may deliver advantageous insights for customized treatment, awareness of the pathological process and prognosis scrutiny for HCC patients.


Assuntos
Carcinoma Hepatocelular , Tomada de Decisão Clínica , Proteínas de Choque Térmico HSP90 , Neoplasias Hepáticas , Análise de Célula Única , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Humanos , Análise de Célula Única/métodos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Masculino , Aprendizado de Máquina , Regulação Neoplásica da Expressão Gênica , Feminino , Biomarcadores Tumorais/genética , Análise de Sequência de RNA , Pessoa de Meia-Idade , RNA-Seq
20.
Ibrain ; 10(3): 323-344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346794

RESUMO

This study aims to explore the expression profile of PANoptosis-related genes (PRGs) and immune infiltration in Alzheimer's disease (AD). Based on the Gene Expression Omnibus database, this study investigated the differentially expressed PRGs and immune cell infiltration in AD and explored related molecular clusters. Gene set variation analysis (GSVA) was used to analyze the expression of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes in different clusters. Weighted gene co-expression network analysis was utilized to find co-expressed gene modules and core genes in the network. By analyzing the intersection genes in random forest, support vector machine, generalized linear model, and extreme gradient boosting (XGB), the XGB model was determined. Eventually, the first five genes (Signal Transducer and Activator of Transcription 3, Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1B, Interleukin 4 Receptor, Chloride Intracellular Channel 1, TNF Receptor Superfamily Member 10B) in XGB model were selected as predictive genes. This research explored the relationship between PANoptosis and AD and established an XGB learning model to evaluate and screen key genes. At the same time, immune infiltration analysis showed that there were different immune infiltration expression profiles in AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA