Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Neotrop Entomol ; 53(4): 868-879, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38980502

RESUMO

Here we describe two new Grotea species from Ecuador, G. akakana Mazón & Bordera sp. nov., and G. romeri Mazón sp. nov., as well as the male of G. cundinamarquesa Herrera-Flórez 2018. G. akakana sp. nov. is characterized by the combination of a postgenal process long, a 45-flagellomeres antenna without a white band and a mesopleuron black with two yellow spots separated by a red one. On the other hand, G. romeri sp. nov. is characterized by the combination of a postgenal process very short, a 36-flagellomeres antenna without a white band, a propodeum with a long and narrow area lateralis, uninterrupted yellow-colored orbits and a mesopleuron black with a yellow spot in the middle. The species G. santandereana Herrera-Flórez 2018 and G. surinamese Herrera-Flórez 2019 are recorded from Ecuador for the first time. This brings the total of described Grotea species to 31, all from the New World, with 27 of these exclusively Neotropical. A key for the identification of Neotropical species is included.


Assuntos
Vespas , Equador , Animais , Masculino , Feminino , Vespas/anatomia & histologia , Vespas/classificação
3.
Environ Entomol ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853372

RESUMO

The All Taxa Biodiversity Inventory (ATBI) in Great Smoky Mountains National Park (GSMNP) seeks to document every species of living thing in the park. The ATBI is decades in progress, yet some taxa remain virtually untouched by taxonomists. Such "high priority" taxa include the hyper-diverse parasitoid wasp family Ichneumonidae. Despite the positive and multifaceted effects ichneumonids have on their environment, only a small percentage of those collected in the park have been identified as species, mostly to their complex morphology and overwhelming diversity. Recently, DNA barcoding has transformed biodiversity inventories, streamlining the process to be more rapid and efficient. To test the effectiveness of barcoding 20 + year-old specimens of Ichneumonidae and catalog new records for GSMNP, COI was amplified from 95 ichneumonid morphospecies collected from Andrew's Bald, NC. Species identifications were confirmed morphologically. Eighty-one ichneumonids generated sequence data, representing 16 subfamilies and 44 genera. The subfamily Oxytorinae is newly recorded from GSMNP, along with 10 newly recorded genera and 23 newly recorded species across Ichneumonidae. These results contribute significantly to the ATBI by adding new park records for a high-priority taxon and demonstrate the effectiveness of applying DNA barcoding to samples in long-term storage or those lacking immediate taxonomic expertise.

4.
Elife ; 132024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904661

RESUMO

The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.


Assuntos
Adaptação Fisiológica , Drosophila , Interações Hospedeiro-Parasita , Vespas , Animais , Vespas/fisiologia , Drosophila/parasitologia , Pupa/parasitologia , Larva/parasitologia , Larva/metabolismo
5.
Insects ; 15(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786908

RESUMO

Parasitoids commonly manipulate their host's metabolism and immunity to facilitate their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid, and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase, fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes (Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data. Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host, laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in their hosts.

6.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607032

RESUMO

Coevolution of hosts and their parasites has shaped heterogeneity of effector hemocyte types, providing immune defense reactions with variable effectiveness. In this work, we characterize hemocytes of Drosophila willistoni, a species that has evolved a cellular immune system with extensive variation and a high degree of plasticity. Monoclonal antibodies were raised and used in indirect immunofluorescence experiments to characterize hemocyte subpopulations, follow their functional features and differentiation. Pagocytosis and parasitization assays were used to determine the functional characteristics of hemocyte types. Samples were visualized using confocal and epifluorescence microscopy. We identified a new multinucleated giant hemocyte (MGH) type, which differentiates in the course of the cellular immune response to parasitoids. These cells differentiate in the circulation through nuclear division and cell fusion, and can also be derived from the central hematopoietic organ, the lymph gland. They have a binary function as they take up bacteria by phagocytosis and are involved in the encapsulation and elimination of the parasitoid. Here, we show that, in response to large foreign particles, such as parasitoids, MGHs differentiate, have a binary function and contribute to a highly effective cellular immune response, similar to the foreign body giant cells of vertebrates.


Assuntos
Drosophila , Parasitos , Animais , Diferenciação Celular , Fagocitose , Imunidade Celular
7.
Virus Evol ; 10(1): veae022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617843

RESUMO

Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.

8.
Proc Biol Sci ; 291(2018): 20232518, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38444335

RESUMO

Mate recognition is paramount for sexually reproducing animals, and many insects rely on cuticular hydrocarbons (CHCs) for close-range sexual communication. To ensure reliable mate recognition, intraspecific sex pheromone variability should be low. However, CHCs can be influenced by several factors, with the resulting variability potentially impacting sexual communication. While intraspecific CHC variability is a common phenomenon, the consequences thereof for mate recognition remain largely unknown. We investigated the effect of CHC variability on male responses in a parasitoid wasp showing a clear-cut within-population CHC polymorphism (three distinct female chemotypes, one thereof similar to male profiles). Males clearly discriminated between female and male CHCs, but not between female chemotypes in no-choice assays. When given a choice, a preference hierarchy emerged. Interestingly, the most attractive chemotype was the one most similar to male profiles. Mixtures of female CHCs were as attractive as chemotype-pure ones, while a female-male mixture negatively impacted male responses, indicating assessment of the entire, complex CHC profile composition. Our study reveals that the evaluation of CHC profiles can be strict towards 'undesirable' features, but simultaneously tolerant enough to cover a range of variants. This reconciles reliable mate recognition with naturally occurring variability.


Assuntos
Reprodução , Atrativos Sexuais , Feminino , Masculino , Animais , Comunicação , Polimorfismo Genético , Reconhecimento Psicológico
9.
BMC Biol ; 22(1): 61, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475722

RESUMO

BACKGROUND: Ecosystems are brimming with myriad compounds, including some at very low concentrations that are indispensable for insect survival and reproduction. Screening strategies for identifying active compounds are typically based on bioassay-guided approaches. RESULTS: Here, we selected two candidate odorant receptors from a major pest of cruciferous plants-the diamondback moth Plutella xylostella-as targets to screen for active semiochemicals. One of these ORs, PxylOR16, exhibited a specific, sensitive response to heptanal, with both larvae and adult P. xylostella displaying heptanal avoidance behavior. Gene knockout studies based on CRISPR/Cas9 experimentally confirmed that PxylOR16 mediates this avoidance. Intriguingly, rather than being involved in P. xylostella-host plant interaction, we discovered that P. xylostella recognizes heptanal from the cuticular volatiles of the parasitoid wasp Cotesia vestalis, possibly to avoid parasitization. CONCLUSIONS: Our study thus showcases how the deorphanization of odorant receptors can drive discoveries about their complex functions in mediating insect survival. We also demonstrate that the use of odorant receptors as a screening platform could be efficient in identifying new behavioral regulators for application in pest management.


Assuntos
Aldeídos , Mariposas , Receptores Odorantes , Vespas , Animais , Ecossistema , Larva
10.
BMC Genomics ; 25(1): 147, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321385

RESUMO

BACKGROUND: Diachasmimorpha longicaudata is a hymenopteran fruit fly endoparasitoid. Females of this species find their hosts for oviposition by using complex sensorial mechanisms in response to physical and chemical stimuli associated with the host and host habitat. Ecological and behavioral aspects related to host-seeking behavior for oviposition have been extensively studied in D. longicaudata, including the identification of volatile organic compounds acting as attractants to females. In this sense, molecular mechanisms of chemoreception have been explored in this species, including a preliminary characterization of odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and odorant receptors (ORs), among other proteins. Functional assays on OBP and CSP have been conducted as a first approach to identify molecular mechanisms associated with the female host-seeking behavior for oviposition. The aims of the present study were to identify the D. longicaudata sensory gene repertoire expressed in the antenna of sexually mature and mated individuals of both sexes, and subsequently, characterize transcripts differentially expressed in the antennae of females to identify candidate genes associated with the female host-seeking behavior for oviposition. RESULTS: A total of 33,745 predicted protein-coding sequences were obtained from a de novo antennal transcriptome assembly. Ten sensory-related gene families were annotated as follows: 222 ORs, 44 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 9 CSPs, 13 OBPs, 2 ammonium transporters (AMTs), 8 pickpocket (PPKs) receptors, 16 transient receptor potential (TRP) channels, 12 CD36/SNMPs and 3 Niemann-Pick type C2 like proteins (NPC2-like). The differential expression analysis revealed 237 and 151 transcripts up- and downregulated, respectively, between the female and male antennae. Ninety-seven differentially expressed transcripts corresponded to sensory-related genes including 88 transcripts being upregulated (87 ORs and one TRP) and nine downregulated (six ORs, two CSPs and one OBP) in females compared to males. CONCLUSIONS: The sensory gene repertoire of D. longicaudata was similar to that of other taxonomically related parasitoid wasps. We identified a high number of ORs upregulated in the female antenna. These results may indicate that this gene family has a central role in the chemoreception of sexually mature females during the search for hosts and host habitats for reproductive purposes.


Assuntos
Comportamento de Busca por Hospedeiro , Receptores Odorantes , Vespas , Humanos , Animais , Masculino , Feminino , Vespas/genética , Perfilação da Expressão Gênica , Transcriptoma , Receptores de Superfície Celular/genética , Receptores Odorantes/genética , Proteínas de Insetos/genética , Antenas de Artrópodes/metabolismo , Filogenia
11.
Toxics ; 12(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38393254

RESUMO

Over the past decade, multiple studies have suggested that the secondary metabolites produced by plants against herbivorous insects could be used as biopesticides. However, as the molecular mechanism of action of these compounds remains unknown, it is difficult to predict how they would affect non-target insects; thus, their innocuity needs to be clarified. Here, we investigate, from the molecular level to the organism, the responses of a useful parasitic insect Nasonia vitripennis (Walker, 1836) being exposed at the pupae stage for 48 h (up to 6 days) to sublethal doses (5 µg/L and 500 µg/L) of 2-Dodecanone. 2-Dodecanone altered the gene expression of genes related to ecdysone-related pathways, biotransformation, and cell homeostasis. A significant induction of ecdysone response-genes (EcR, usp, E78, Hr4, Hr38) was detected, despite no significant differences in ecdysteroid levels. Regarding the cell homeostasis processes, the gene l(2)efl was differentially altered in both experimental conditions, and a dose-dependent induction of hex81 was observed. 2-Dodecanone also triggered an induction of Cyp6aQ5 activity. Finally, 2-Dodecanone exposure had a significant effect on neither development time, energy reserves, nor egg-laying capacity; no potential genotoxicity was detected. For the first time, this study shows evidence that 2-Dodecanone can modulate gene expression and interfere with the ecdysone signalling pathway in N. vitripennis. This could lead to potential endocrine alterations and highlight the suitability of this organism to improve our general understanding of the molecular effects of plant defences in insects. Our findings provide new insights into the toxicity of 2-Dodecanone that could potentially be explored in other species and under field conditions for plant protection and pest management as a means to reduce reliance on synthetic pesticides.

12.
Arthropod Struct Dev ; 78: 101325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176179

RESUMO

The parasitoid Torymus sinensis (Hymenoptera: Torymidae) has been successfully used in Italy since 2005 for biological control of the invasive cynipid Dryocosmus kuriphilus (Hymenoptera: Cynipidae), highly destructive for the economically relevant Castanea sativa (Fagales: Fagaceae). In order to investigate the morphological aspects related to sensorial behavior, a fine morphology study of the antennae and their sensilla was conducted by scanning electron microscopy on both sexes of T. sinensis. The antennae, composed of a scape, a pedicel and a flagellum with ten flagellomeres, had chaetic sensilla of six subtypes, placoid sensilla of three subtypes, trichoid sensilla, sensilla with a roundish grooved tip, and coeloconic sensilla. The chaetic sensilla of the first three subtypes were found in the scape and in the pedicel, and those of the last three subtypes, together with trichoid, roundish grooved tip and coeloconic sensilla, were found only on flagellomeres. Sexual dimorphism was detected in the morphology of the proper pedicel and the flagellum, and in the presence and distribution of the sensilla and their subtypes. The morphological aspects of the antenna of T. sinensis and of its sensilla were compared with those found in the family Torymidae and in other families of the extremely diverse superfamily Chalcidoidea.


Assuntos
Himenópteros , Feminino , Masculino , Animais , Microscopia Eletrônica de Varredura , Sensilas/anatomia & histologia , Membrana Celular , Caracteres Sexuais , Antenas de Artrópodes
13.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061001

RESUMO

Parasitoids introduce various virulence factors when parasitism occurs, and some taxa generate teratocytes to manipulate the host immune system and metabolic homeostasis for the survival and development of their progeny. Host-parasitoid interactions are extremely diverse and complex, yet the evolutionary dynamics are still poorly understood. A category of serpin genes, named CvT-serpins, was discovered to be specifically expressed and secreted by the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella. Genomic and phylogenetic analysis indicated that the C. vestalis serpin genes are duplicated and most of them are clustered into 1 monophyletic clade. Intense positive selection was detected at the residues around the P1-P1' cleavage sites of the Cv-serpin reactive center loop domain. Functional analyses revealed that, in addition to the conserved function of melanization inhibition (CvT-serpins 1, 16, 18, and 21), CvT-serpins exhibited novel functions, i.e. bacteriostasis (CvT-serpins 3 and 5) and nutrient metabolism regulation (CvT-serpins 8 and 10). When the host-parasitoid system is challenged with foreign bacteria, CvT-serpins act as an immune regulator to reprogram the host immune system through sustained inhibition of host melanization while simultaneously functioning as immune effectors to compensate for this suppression. In addition, we provided evidence that CvT-serpin8 and 10 participate in the regulation of host trehalose and lipid levels by affecting genes involved in these metabolic pathways. These findings illustrate an exquisite tactic by which parasitoids win out in the parasite-host evolutionary arms race by manipulating host immune and nutrition homeostasis via adaptive gene evolution and neofunctionalization.


Assuntos
Mariposas , Parasitos , Serpinas , Vespas , Animais , Serpinas/genética , Filogenia , Mariposas/genética , Homeostase , Larva/metabolismo , Vespas/genética
14.
Front Immunol ; 14: 1330312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124757

RESUMO

Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.


Assuntos
Drosophila , Vespas , Animais , Drosophila melanogaster , Larva , Diferenciação Celular
15.
Zookeys ; 1183: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915996

RESUMO

This paper reviews the status of Geodiapria and its nominotypical and only included species G.longiceps. Geodiapria was previously understood to be very similar to, and doubtfully separated from the genus Basalys. We use integrative taxonomy (morphology, DNA-barcoding, phylogenetic tree building) to show that the valid name for what was G.longiceps Kieffer, 1911 is now Basalysrufocinctus (Kiefer, 1911) and that Geodiapria is consequently a junior synonym of Basalyssyn. nov. The following taxa are new synonyms of B.rufocinctus: Loxotropalongiceps Wasmann, 1909, syn. nov., G.longiceps Kieffer, 1911, syn. nov., L.rufosignata Kieffer, 1911, syn. nov. Basalysrufocinctus is newly reported from Corsica, Germany, Norway and Spain.

16.
Insects ; 14(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37999060

RESUMO

Understanding how biodiversity varies from place to place is a fundamental goal of ecology and an important tool for halting biodiversity loss. Parasitic wasps (Hymenoptera) are a diverse and functionally important animal group, but spatial variation in their diversity is poorly understood. We survey a community of parasitic wasps (Ichneumonidae: Pimplinae) using Malaise traps up a mountain in the Brazilian Atlantic Rainforest, and relate the catch to biotic and abiotic habitat characteristics. We find high species richness compared with previous similar studies, with abundance, richness, and diversity peaking at low to intermediate elevation. There is a marked change in community composition with elevation. Habitat factors strongly correlated with elevation also strongly predict changes in the pimpline community, including temperature as well as the density of bamboo, lianas, epiphytes, small trees, and herbs. These results identify several possible surrogates of pimpline communities in tropical forests, which could be used as a tool in conservation. They also contribute to the growing evidence for a typical latitudinal gradient in ichneumonid species richness, and suggest that low to medium elevations in tropical regions will sometimes conserve the greatest number of species locally, but to conserve maximal biodiversity, a wider range of elevations should also be targeted.

17.
Zookeys ; 1180: 67-79, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744947

RESUMO

A new genus of the braconid subfamily Cardiochilinae, Ophiclypeusgen. nov., is described and illustrated based on three new species: O.chiangmaiensis Kang, sp. nov. type species (type locality: Chiang Mai, Thailand), O.dvaravati Ghafouri Moghaddam, Quicke & Butcher, sp. nov. (type locality: Saraburi, Thailand), and O.junyani Kang, sp. nov. (type locality: Dalin, Taiwan). We provide morphological diagnostic characters to separate the new genus from other cardiochiline genera. A modified key couplet (couplet 5) and a new key couplet (couplet 16) are provided with detailed images for Dangerfield's key to the world cardiochiline genera to facilitate recognition of Ophiclypeusgen. nov.

18.
Pathogens ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513804

RESUMO

Biological pest control is an environmentally friendly alternative to synthetic pesticides, using organisms such as viruses, bacteria, fungi, and parasitoids. However, efficacy is variable and combining different biocontrol agents could improve success rates. We conducted a systematic review of studies combining a parasitoid with an entomopathogenic microorganism, the first of its kind. We searched in Web of Science and extracted data from 49 publications matching the pre-defined inclusion criteria. Combinations of 36 hymenopteran parasitoids with 17 entomopathogenic microorganisms used to control 31 target pests were found. Trichogramma pretiosum and Encarsia formosa were the most frequently studied parasitoids, while Beauveria bassiana, Metarhizium anisopliae, Lecanicillium muscarium, Bacillus thuringiensis var. kurstaki, the Spodoptera exigua multiple nucleopolyhedrovirus, and the Spodoptera frugiperda multiple nucleopolyhedrovirus were the main microbial agents assessed. Out of 49 parasitoid-microorganism combinations assessed in the laboratory experiments, thirty-eight were reported as compatible and six as incompatible. Timing and dosage of biopesticides played a crucial role, with later application and appropriate dosage minimizing adverse effects on parasitoid development. More research is needed to assess compatibility and efficacy under real-world conditions. Our review provides valuable insights for researchers and practitioners to optimize the combined use of micro- and macroorganisms for effective pest control.

19.
Front Physiol ; 14: 1214835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520833

RESUMO

Heat shock proteins, including αB-crystallins (CRYAB), are pivotal in cellular defense mechanisms and stress response. This study presents a comprehensive investigation of heat shock proteins (HSPs), with a specific focus on the CRYAB family, within the genome of Pteromalus puparum. The analysis encompasses the identification of these proteins, exploration of their phylogenetic relationships, examination of conserved domains, and evaluation of their response to high temperature conditions. A total of 46 HSPs were identified in the P. puparum genome, and the differential expression of mRNA at 35°C and 25°C drew attention to five genes belonging to the CRYAB family, namely, PpCRYAB-1 to PpCRYAB-5. The conservation level of CRYAB family genes across different species was observed to be relatively modest. Through genome-wide screening of 22 species representing six insect orders, a total of 235 CRYAB proteins were identified, with P. puparum harboring eight CRYAB proteins, indicative of a moderate abundance compared to other species. Intriguingly, evolutionary analysis highlighted PpCRYAB-4 with potentially intricate differentiation in comparison to other members of the CRYAB family. Furthermore, RNA interference (RNAi) results demonstrated significant regulatory effects on adult lifespan under heat stress at 35°C for PpCRYAB-4 and PpCRYAB-5. These findings lay a groundwork for future investigations into stress resistance mechanisms in parasitic wasps, providing fresh insights for the study of insect resilience amidst the backdrop of global climate change.

20.
Front Cell Dev Biol ; 11: 1166517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325562

RESUMO

The linker histone H1 binds to the nucleosome core particle at the site where DNA enters and exits, and facilitates folding of the nucleosomes into a higher-order chromatin structure in eukaryotes. Additionally, some variant H1s promote specialized chromatin functions in cellular processes. Germline-specific H1 variants have been reported in some model species with diverse roles in chromatin structure changes during gametogenesis. In insects, the current understanding of germline-specific H1 variants comes mainly from the studies in Drosophila melanogaster, and the information on this set of genes in other non-model insects remains largely unknown. Here, we identify two H1 variants (PpH1V1 and PpH1V2) that are specifically predominantly expressed in the testis of the parasitoid wasp Pteromalus puparum. Evolutionary analyses suggest that these H1 variant genes evolve rapidly, and are generally maintained as a single copy in Hymenoptera. Disruption of PpH1V1 function in the late larval stage male by RNA interference experiments has no phenotype on spermatogenesis in the pupal testis, but results in abnormal chromatin structure and low sperm fertility in the adult seminal vesicle. In addition, PpH1V2 knockdown has no detectable effect on spermatogenesis or male fertility. Collectively, our discovery indicates distinct functions of male germline-enriched H1 variants between parasitoid wasp Pteromalus and Drosophila, providing new insights into the role of insect H1 variants in gametogenesis. This study also highlights the functional complexity of germline-specific H1s in animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...