Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001113

RESUMO

The development of intelligent transportation systems (ITS), vehicular ad hoc networks (VANETs), and autonomous driving (AD) has progressed rapidly in recent years, driven by artificial intelligence (AI), the internet of things (IoT), and their integration with dedicated short-range communications (DSRC) systems and fifth-generation (5G) networks. This has led to improved mobility conditions in different road propagation environments: urban, suburban, rural, and highway. The use of these communication technologies has enabled drivers and pedestrians to be more aware of the need to improve their behavior and decision making in adverse traffic conditions by sharing information from cameras, radars, and sensors widely deployed in vehicles and road infrastructure. However, wireless data transmission in VANETs is affected by the specific conditions of the propagation environment, weather, terrain, traffic density, and frequency bands used. In this paper, we characterize the path loss based on the extensive measurement campaign carrier out in vehicular environments at 700 MHz and 5.9 GHz under realistic road traffic conditions. From a linear dual-slope path loss propagation model, the results of the path loss exponents and the standard deviations of the shadowing are reported. This study focused on three different environments, i.e., urban with high traffic density (U-HD), urban with moderate/low traffic density (U-LD), and suburban (SU). The results presented here can be easily incorporated into VANET simulators to develop, evaluate, and validate new protocols and system architecture configurations under more realistic propagation conditions.

2.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005623

RESUMO

The usage scenarios defined in the ITU-M2150-1 recommendation for IMT-2020 systems, including enhanced Mobile Broadband (eMBB), Ultra-reliable Low-latency Communication (URLLC), and massive Machine Type Communication (mMTC), allow the possibility of accessing different services through the set of Radio Interface Technologies (RITs), Long-term Evolution (LTE), and New Radio (NR), which are components of RIT. The potential of the low and medium frequency bands allocated by the Federal Communications Commission (FCC) for the fifth generation of mobile communications (5G) is described. In addition, in the Internet of Things (IoT) applications that will be covered by the case of use of the mMTC are framed. In this sense, a propagation channel measurement campaign was carried out at 850 MHz and 5.9 GHz in a covered corridor environment, located in an open space within the facilities of the Pedagogical and Technological University of Colombia campus. The measurements were carried out in the time domain using a channel sounder based on a Universal Software Radio Peripheral (USRP) to obtain the received signal power levels over a range of separation distances between the transmitter and receiver from 2.00 m to 67.5 m. Then, a link budget was proposed to describe the path loss behavior as a function of these distances to obtain the parameters for the close-in free space reference distance (CI) and the floating intercept (FI) path loss prediction models. These parameters were estimated from the measurements made using the Minimum Mean Square Error (MMSE) approach. The estimated path loss exponent (PLE) values for both the CI and FI path loss models at 850 MHz and 3.5 GHz are in the range of 2.21 to 2.41, respectively. This shows that the multipath effect causes a lack of constructive interference to the received power signal for this type of outdoor corridor scenario. These results can be used in simulation tools to evaluate the path loss behavior and optimize the deployment of device and sensor network infrastructure to enable 5G-IoT connectivity in smart university campus scenarios.

3.
Heliyon ; 8(11): e11581, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36406713

RESUMO

Millimeter wave path loss modeling is essential for reliable system design and accurate link budget calculations. The motivation for this research is that channel modeling in 5G millimeter wave propagation in an indoor environment is a current research topic in which capacity differences have been noticed as a result of different models being utilized. Existing models for future millimeter wave propagation must be tested and improved in order to aid link design. The improvements in the path loss models will allow engineers and researchers to budget for 5G wireless networks with better quality in an indoor environment. In this paper, we discuss the survey of indoor environment undertaking for both line of sight (LOS) and non-line of sight (NLOS) scenarios as well as the comparison of path loss performance analysis of the three commonly used models: Close-In (CI) free space reference model, Floating Intercept (FI), and Alpha-Beta-Gamma (ABG) models at some selected frequencies. The review looked at how to determine efficient path loss models which is a major challenge in millimeter wave propagation. The paper also focuses on the measurement work done in millimeter wave research in interior environments. The analysis of path loss and shadow fading in different frequency bands are presented. The researchers whose publications were examined for this study used a range of methodologies to forecast path loss models and propagation parameters of millimeter wave communication channel. This will help design engineers and researchers calculate budgets for a suitable 5G and even forecasted 6G wireless network in an inside environment. Another purpose of this paper is to get a thorough understanding of the best route loss model, especially for interior situations, and to improve it in future research to provide a better line of fit and simplicity among the three fundamental path loss models: CI, ABG, and FI. In both LOS and NLOS scenarios, the study found that the CI free space reference model and the FI path loss models are the best path loss models for indoor millimeter wave propagation. Future research will focus on how to improve the appropriate model for path loss model estimate in both LOS and NLOS situations in an indoor environment with the best line of fit and the easiest implementation.

4.
Sensors (Basel) ; 21(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801878

RESUMO

Regarding wireless sensor network parameter estimation of the propagation model is a most important issue. Variations of the received signal strength indicator (RSSI) parameter are a fundamental problem of a system based on signal strength. In the present paper, we propose an algorithm based on Bayesian filtering techniques for estimating the path-loss exponent of the log-normal shadowing propagation model for outdoor RSSI measurements. Furthermore, in a series of experiments, we will demonstrate the usefulness of the particle filter for estimating the RSSI data. The stability of this algorithm and the differences in determined path-loss exponent for both method were also analysed. The proposed method of dynamic estimation results in significant improvements of the accuracy of RSSI values when compared with the experimental measurements. It should be emphasised that the path-loss exponent mainly depends on the RSSI data. Our results also indicate that increasing the number of inserted particles does not significantly raise the quality of the estimated parameters.

5.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217962

RESUMO

We present a novel hybrid localization algorithm for wireless sensor networks in the absence of knowledge regarding the transmit power and path-loss exponent. Transmit power and the path-loss exponent are critical parameters for target localization algorithms in wireless sensor networks, which help extract target position information from the received signal strength. In the absence of information on transmit power and path-loss exponent, it is critical to estimate them for reliable deployment of conventional target localization algorithms. In this paper, we propose a simultaneous estimation of transmit power and path-loss exponent based on Kalman filter. The unknown transmit power and path-loss exponent are estimated using a Kalman filter with the tentatively estimated target position based solely on angle information. Subsequently, the target position is refined using a hybrid method incorporating received signal strength measurements based on the estimated transmit power and path-loss exponent. Our proposed algorithm accurately estimates transmit power and path-loss exponent and yields almost the same target position accuracy as the simulation results confirm, as the hybrid target localization algorithms with known transmit power and path-loss exponent. Simulation results confirm the proposed algorithm achieves 99.7% accuracy of the target localization performance with known transmit power and path-loss exponent, even in the presence of severe received signal strength measurement noise.

6.
Sensors (Basel) ; 16(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618055

RESUMO

The localization of a sensor in wireless sensor networks (WSNs) has now gained considerable attention. Since the transmit power and path loss exponent (PLE) are two critical parameters in the received signal strength (RSS) localization technique, many RSS-based location methods, considering the case that both the transmit power and PLE are unknown, have been proposed in the literature. However, these methods require a search process, and cannot give a closed-form solution to sensor localization. In this paper, a novel RSS localization method with a closed-form solution based on a two-step weighted least squares estimator is proposed for the case with the unknown transmit power and uncertainty in PLE. Furthermore, the complete performance analysis of the proposed method is given in the paper. Both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The relationships between the deterministic CRLB and the proposed stochastic CRLB are presented. The paper also proves that the proposed method can reach the stochastic CRLB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA