RESUMO
In parametric Bayesian designs of early phase cancer clinical trials with drug combinations exploring a discrete set of partially ordered doses, several authors claimed that there is no added value in including an interaction term to model synergism between the two drugs. In this paper, we investigate these claims in the setting of continuous dose levels of the two agents. Parametric models will be used to describe the relationship between the doses of the two agents and the probability of dose limiting toxicity and efficacy. Trial design proceeds by treating cohorts of two patients simultaneously receiving different dose combinations and response adaptive randomization. We compare trial safety and efficiency of the estimated maximum tolerated dose (MTD) curve between models that include an interaction term with models without the synergism parameter with extensive simulations. Under a selected class of dose-toxicity models and dose escalation algorithm, we found that not including an interaction term in the model can compromise the safety of the trial and reduce the pointwise reliability of the estimated MTD curve.
RESUMO
Phase 1 dose-escalation trials are crucial to drug development by providing a framework to assess the toxicity of novel agents in a stepwise and monitored fashion. Despite widely adopted, rule-based dose-escalation methods (such as 3 + 3) are limited in finding the maximum tolerated dose (MTD) and tend to treat a significant number of patients at subtherapeutic doses. Newer methods of dose escalation, such as model-based and model-assisted designs, have emerged and are more accurate in finding MTD. However, these designs have not yet been broadly embraced by investigators. In this review, we summarise the advantages and disadvantages of contemporary dose-escalation methods, with emphasis on model-assisted designs, including time-to-event designs and hybrid methods involving optimal biological dose (OBD). The methods reviewed include mTPI, keyboard, BOIN, and their variations. In addition, the challenges of drug development (and dose-escalation) in the era of immunotherapeutics are discussed, where many of these agents typically have a wide therapeutic window. Fictional examples of how the dose-escalation method chosen can alter the outcomes of a phase 1 study are described, including the number of patients enrolled, the trial's timeframe, and the dose level chosen as MTD. Finally, the recent trends in dose-escalation methods applied in phase 1 trials in the immunotherapeutics era are reviewed. Among 856 phase I trials from 2014 to 2019, a trend towards the increased use of model-based and model-assisted designs over time (OR = 1.24) was detected. However, only 8% of the studies used non-rule-based dose-escalation methods. Increasing familiarity with such dose-escalation methods will likely facilitate their uptake in clinical trials.
RESUMO
Immunotherapies are becoming increasingly important in the treatment armamentarium of a variety of malignancies. Immune checkpoint inhibitors are the most representative drugs receiving regulatory approval over the past few years. In a recent study published in Clinical Cancer Research, we demonstrated that these agents are being developed faster than other prior anticancer therapies. All checkpoint inhibitors received priority review, being granted with at least one Food and Drug Administration expedited program. Hence, some of them are getting marketing approval after preliminary trials. The model continues to rely on phase I trials, designed with traditional models for dose definition, although a substantial number of patients are treated during the dose expansion cohorts. We demonstrated that efficacy and safety are reasonably predicted from the dose-finding portion of phase I trials with these agents, assuring a low treatment-related mortality for patients throughout the development process. In this article, we further discuss and summarize these findings and update some recent approval information for immune checkpoint inhibitors.