Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.335
Filtrar
1.
Methods Mol Biol ; 2848: 217-247, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240526

RESUMO

Various strategies for replacing retinal neurons lost in degenerative diseases are under investigation, including stimulating the endogenous regenerative capacity of Müller Glia (MG) as injury-inducible retinal stem cells. Inherently regenerative species, such as zebrafish, have provided key insights into mechanisms regulating MG dedifferentiation to a stem-like state and the proliferation of MG and MG-derived progenitor cells (MGPCs). Interestingly, promoting MG/MGPC proliferation is not sufficient for regeneration, yet mechanistic studies are often focused on this measure. To fully account for the regenerative process, and facilitate screens for factors regulating cell regeneration, an assay for quantifying cell replacement is required. Accordingly, we adapted an automated reporter-assisted phenotypic screening platform to quantify the pace of cellular regeneration kinetics following selective cell ablation in larval zebrafish. Here, we detail a method for using this approach to identify chemicals and genes that control the rate of retinal cell regeneration following selective retinal cell ablation.


Assuntos
Peixe-Zebra , Animais , Retina/citologia , Retina/metabolismo , Fenótipo , Proliferação de Células , Regeneração , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Cinética , Regeneração Nervosa/fisiologia
2.
J Ethnopharmacol ; 336: 118743, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39209000

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver-related morbidity and mortality, with hepatic steatosis being the hallmark symptom. Salvia miltiorrhiza Bunge (Smil, Dan-Shen) and Ligusticum striatum DC (Lstr, Chuan-Xiong) are commonly used to treat cardiovascular diseases and have the potential to regulate lipid metabolism. However, whether Smil/Lstr combo can be used to treat NAFLD and the mechanisms underlying its lipid-regulating properties remain unclear. PURPOSE: To assess the feasibility and reliability of a short-term high-fat diet (HFD) induced zebrafish model for evaluating hepatic steatosis phenotype and to investigate the liver lipid-lowering effects of Smil/Lstr, as well as its active components. METHODS: The phenotypic alterations of liver and multiple other organ systems were examined in the HFD zebrafish model using fluorescence imaging and histochemistry. The liver-specific lipid-lowering effects of Smil/Lstr combo were evaluated endogenously. The active molecules and functional mechanisms were further explored in zebrafish, human hepatocytes, and hamster models. RESULTS: In 5-day HFD zebrafish, significant lipid accumulation was detected in the blood vessels and the liver, as evidenced by increased staining with Oil Red O and fluorescent lipid probes. Hepatic hypertrophy was observed in the model, along with macrovesicular steatosis. Smil/Lstr combo administration effectively restored the lipid profile and alleviated hepatic hypertrophy in the HFD zebrafish. In oleic-acid stimulated hepatocytes, Smil/Lstr combo markedly reduced lipid accumulation and cell damage. Subsequently, based on zebrafish phenotypic screening, the natural phthalide senkyunolide I (SEI) was identified as a major molecule mediating the lipid-lowering activities of Smil/Lstr combo in the liver. Moreover, SEI upregulated the expression of the lipid metabolism regulator PPARα and downregulated fatty acid translocase CD36, while a PPARα antagonist sufficiently blocked the regulatory effect of SEI on hepatic steatosis. Finally, the roles of SEI on hepatic lipid accumulation and PPARα signaling were further verified in the hamster model. CONCLUSIONS: We proposed a zebrafish-based screening strategy for modulators of hepatic steatosis and discovered the regulatory roles of Smil/Lstr combo and its component SEI on liver lipid accumulation and PPARα signaling, suggesting their potential value as novel candidates for NAFLD treatment.


Assuntos
PPAR alfa , Transdução de Sinais , Peixe-Zebra , Animais , Cricetinae , Humanos , Masculino , Benzofuranos/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Mesocricetus , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Breast Cancer Res ; 4(1): 5-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39363892

RESUMO

"What are the mechanisms driving tumor evolution under the selective pressure of chemotherapeutics?" The emerging importance of epigenetic gene regulation in cancer progression necessitates not only our understanding of which genes are potential targets but also what mechanisms are employed in targeting those genes. Understanding the mechanisms that promote the evolution of the normal genome and epigenome is central to understanding how cancer cells adapt to chemotherapy. Our previous investigations have shown that heat shock protein 90 (HSP90) has a critical role in epigenetic gene regulation through histone acetylation and phenotypic plasticity. We recently extended these results in an A549 lung cancer model to test the role of HSP90 in the plasticity of cells regarding multi-drug resistance and epithelial-to-mesenchymal transition phenotypes. HSP90 is over-expressed in multiple cancers with poor prognosis. We propose that inhibition of HSP90 results in lower phenotypic plasticity of cancer cells making them more susceptible to chemotherapeutic intervention. Here we review the context of our results in the broader field of evolution of these phenotypes.

4.
Front Microbiol ; 15: 1439814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355425

RESUMO

Introduction: Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a serious threat to human health worldwide and the quest for new anti-tubercular drugs is an enduring and demanding journey. Natural products (NPs) have played a significant role in advancing drug therapy of infectious diseases. Methods: This study evaluated the suitability of a high-throughput infection system composed of the host amoeba Dictyostelium discoideum (Dd) and Mycobacterium marinum (Mm), a close relative of Mtb, to identify anti-infective compounds. Growth of Dd and intracellular Mm were quantified by using luminescence and fluorescence readouts in phenotypic assays. The system was first benchmarked with a set of therapeutic anti-Mtb antibiotics and then used to screen a library of biotransformed stilbenes. Results: The study confirmed both efficacy of established antibiotics such as rifampicin and bedaquiline, with activities below defined anti-mycobacterium susceptibility breakpoints, and the lack of activity of pyrazinamide against Mm. The screening revealed the promising anti-infective activities of trans-δ-viniferins and in particular of two compounds 17 and 19 with an IC50 of 18.1 µM, 9 µM, respectively. Both compounds had no activity on Mm in broth. Subsequent exploration via halogenation and structure-activity relationship studies led to the identification of derivatives with improved selectivity and potency. The modes of action of the anti-infective compounds may involve inhibition of mycobacterial virulence factors or boosting of host defense. Discussion: The study highlights the potential of biotransformation and NP-inspired derivatization approaches for drug discovery and underscores the utility of the Dd-Mm infection system in identifying novel anti-infective compounds.

5.
Front Genet ; 15: 1421529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355687

RESUMO

Objective: Characterization studies of the phenotypic and genetic diversity of Mongolian goats are limited, despite several goat breeds being registered in the country. This study aimed to evaluate the phenotypic and genetic diversity of 14 cashmere goat populations in Mongolia, consisting largely of identified goat breeds. Methods: Body weight, cashmere quality, and coat color were the phenotypic traits considered in this study. A linear model was used to fit body weight and cashmere traits, and least squares means (LSMs) were estimated for the region and location classes. Genetic diversity and structure were assessed using a goat 50K SNP array. Results: The studied populations exhibited greater phenotypic diversity at the regional level. A very small overall differentiation index (Fst: 0.017) was revealed by Wright's Fst and a very small overall inbreeding index (F ROH1 :0.019) was revealed based on runs of homozygosity. Genetic clustering of populations by principal components showed large variances for the two goat populations of the Russian admixture (Gobi Gurvan Saikhan and Uuliin Bor), and smaller but differentiated clusters for the remaining populations. Similar results were observed in the admixture analysis, which identified populations with the highest (Govi Gurvan Saikhan and Uuliin Bor) and lowest (Tsagaan Ovoo Khar) exotic admixtures. A genomewide association study (GWAS) of body weight and cashmere traits identified a few significant variants on chromosomes 2, 4, 5, 9, and 15, with the strongest variant for cashmere yield on chromosome 4. The GWAS on coat color yielded nine significant variants, with the strongest variants located on chromosomes 6, 13, and 18 and potential associations with KIT, ASIP, and MC1R genes. These signals were also found in other studies on coat color and patterns in goats. Conclusion: Mongolian cashmere goats showed relatively low genetic differentiation and low inbreeding levels, possibly caused by the traditional pastoral livestock management system and the practice of trading breeding bucks across provinces, along with a recent increase in the goat population. Further investigation of cashmere traits using larger samples and alternative methods may help identify the genes or genomic regions underlying cashmere quality in goats.

6.
J Therm Biol ; 125: 103977, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39353365

RESUMO

Discrete populations of widely distributed species may inhabit areas with marked differences in climatic conditions across geographic and seasonal scales, which could result in intraspecific variation in thermal physiology reflecting genetic adaptation, phenotypic plasticity, or both. However, few studies have evaluated inter-population variation in physiological responses to heat. We evaluated within- and inter-population seasonal variation in heat tolerance, cooling efficiency and other key thermoregulatory traits in two Mediterranean populations of Great tit Parus major experiencing contrasting thermal environments: a lowland population subject to hotter summers and a higher annual thermal amplitude than a montane population. Specifically, we measured heat tolerance limits (HTL), body temperature, resting metabolic rate, evaporative water loss, and evaporative cooling efficiency (the ratio between evaporative heat loss to metabolic heat production) within and above the thermoneutral zone during winter and summer. Heat tolerance during summer was greater in lowland than in montane birds; indeed, lowland birds seasonally increased this trait to a significant level, while montane ones did to a lesser extent. Besides, lowland birds showed greater evaporative cooling efficiency during summer (possibly due in part to reductions in total endogenous heat load), while surprisingly montane ones showed the opposite trend. Thus, lowland birds displayed greater seasonal flexibility in HTL, body temperature and resting metabolic rate above thermoneutrality, thus giving some support to the climatic variability hypothesis - that flexibility in thermoregulatory traits should increase with climatic variability. Our results partially support the idea that songbirds' adaptive thermoregulation in the heat is flexible, highlighting the importance of considering intraspecific variation in thermoregulatory traits when modelling the future distribution and persistence of species under different climate change scenarios.

7.
J Therm Biol ; 125: 103988, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39366146

RESUMO

The invasive pest, Liriomyza trifolii, poses a significant threat to ornamental and vegetable plants. It spreads rapidly and causes large-scale outbreaks with pronounced thermotolerance. In this study, we developed L. trifolii strains adapted to high temperatures (strains designated 35 and 40); these were generated from a susceptible strain (designated S) by long-term thermal acclimation to 35 °C and 40 °C, respectively. Age-stage, two-sex life tables, thermal preferences, critical thermal limits, knockdown behaviors, eclosion and survival rates as well as expression of genes encoding heat shock proteins (Hsps) were compared for the three strains. Our findings indicated that the thermotolerance of L. trifolii was enhanced after long-term thermal acclimation, which suggested an adaptive plastic response to thermal stress. A trade-off between reproduction and thermotolerance was observed under thermal stress, potentially improving survival of the population and fostering adaptionary changes. Acclimation at 35 °C improved reproductive performance and population density of L. trifolii, particularly by enhancing the fecundity of female adults and accelerating the speed of development. Although the 40 strain exhibited the highest developmental speed and greater thermotolerance, it incurred a larger reproductive cost. This study provides a theoretical framework for monitoring and controlling leafminers and understanding their evolutionary adaptation to environmental changes.

8.
Evol Med Public Health ; 12(1): 172-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39364294

RESUMO

Tumorigenesis is commonly attributed to Darwinian processes involving natural selection among cells and groups of cells. However, progressing tumors are those that also achieve an appropriate group phenotypic composition (GPC). Yet, the selective processes acting on tumor GPCs are distinct from that associated with classical Darwinian evolution (i.e. natural selection based on differential reproductive success) as tumors are not genuine evolutionary individuals and do not exhibit heritable variation in fitness. This complex evolutionary scenario is analogous to the recently proposed concept of 'selection for function' invoked for the evolution of both living and non-living systems. Therefore, we argue that it is inaccurate to assert that Darwinian processes alone account for all the aspects characterizing tumorigenesis and cancer progression; rather, by producing the genetic and phenotypic diversity required for creating novel GPCs, these processes fuel the evolutionary success of tumors that is dependent on selection for function at the tumor level.

9.
Proc Natl Acad Sci U S A ; 121(41): e2412526121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39352929

RESUMO

A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.


Assuntos
Aclimatação , Altitude , Hipóxia , Peromyscus , Termogênese , Animais , Peromyscus/fisiologia , Peromyscus/genética , Aclimatação/fisiologia , Hipóxia/fisiopatologia , Termogênese/fisiologia , Adaptação Fisiológica , Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Evolução Biológica , Masculino
10.
Curr Health Sci J ; 50(2): 299-309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371052

RESUMO

The purpose of our study was the phenotypic classification of patients with osteoarthritis of the knee (KOA) and the dynamic assessment of functional status, monitored both numerically and in conformity with the International Classification of Functioning, Disability, and Health (ICF-basic set, shortened form). We conducted a prospective study in the Department of Physical Medicine and Rehabilitation, Filantropia Hospital, Craiova, from June of 2022 to November of 2023. In total, 100 patients with KOA were enlisted. Using data from the literature, physiotherapeutic examination, and results from paraclinical examinations, we classified studied patients into the five phenotypic categories: chronic pain (F1), local pathology with predominance of inflammatory mechanisms (F2), local pathology with predominance of metabolic mechanisms of bone and cartilage structures (F3), metabolic disorders (F4) and comorbidities (F5)-primarily chronic venous insufficiency in the lower limbs. We analyzed the values of generic qualifiers (at two evaluation time points) for the most significant elements of the core ICF set, abbreviated form, used in OAG, across each of the five phenotypes. Phenotypes F4 and F5 showed significant improvements across all evaluated functions, indicating increased efficacy in patients with comorbidities and metabolic diseases. Reduction in pain sensation, improvement in joint and muscle mobility, as well as enhancements in functions related to walking, dressing, and hand use, reflect an overall improvement in the quality of life for these patients.

11.
Biol Open ; 13(10)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39373528

RESUMO

'The evolution of multicellularity and cell differentiation' symposium, organized as part of the EuroEvoDevo 2024 meeting on June 25-28th in Helsinki (Finland), addressed recent advances on the molecular and mechanistic basis for the evolution of multicellularity and cell differentiation in eukaryotes. The symposium involved over 100 participants and brought together 10 speakers at diverse career stages. Talks covered various topics at the interface of developmental biology, evolutionary cell biology, comparative genomics, computational biology, and ecology using animal, protist, algal and mathematical models. This symposium offered a unique opportunity for interdisciplinary dialog among researchers working on different systems, especially in promoting collaborations and aligning strategies for studying emerging model species. Moreover, it fostered opportunities to promote early career researchers in the field and opened discussions of ongoing work and unpublished results. In this Meeting Review, we aim to promote the research, capture the spirit of the meeting, and present key topics discussed within this dynamic, growing and open community.


Assuntos
Evolução Biológica , Diferenciação Celular , Diferenciação Celular/genética , Animais , Biologia Computacional/métodos , Humanos , Biologia Celular , Modelos Biológicos , Simulação por Computador , Genômica/métodos
12.
Mycologia ; : 1-21, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374447

RESUMO

This paper reports the South American rust fungi Puccinia modiolae and P. platyspora (Pucciniales/Uredinales) as new alien species of the European rust funga. Puccinia modiolae is presently known from Switzerland and Germany, P. platyspora from Switzerland, Germany, and France. The records of P. platyspora are the first ones from outside South America. The specimens were identified by teliospore characters and sequences of the nuclear ribosomal DNA (internal transcribed spacer 2 and domains D1-D2 of the nuclear ribosomal large subunit) and the mitochondrial CO3 (cytochrome c oxidase III) gene. Puccinia modiolae and P. platyspora have been recorded so far in Europe on members of the genera Alcea, predominantly on Alcea rosea, Althaea, and Malva of the Malvaceae, subfam. Malvoideae. Alcea rosea is host of both species and shared also with the common mallow rust, P. malvacearum, allowing for mixed infections. The plant is commonly grown as an ornamental and may play a major role for the spread of the alien Malvaceae rust fungi. It was observed for the first time that P. platyspora can produce spermogonia and aecidium-type aecia, suggesting phenotypic plasticity regarding the formation of spore states. The observed spermogonia mainly remained closed and did not liberate spermatia. They produced telio- and aeciospores besides spermatia in their cavity and eventually converted entirely into telia or, rarely, into aecidium-like sori. Small clusters of aeciospores and peridial cells were commonly found hidden in the telial plectenchyma, and well-developed aecidium-type aecia provided with a peridium developed rarely in the center of mature telia. Spermogonia belonging to group V type 4 were found in P. malvacearum, which is generally supposed to lack spermogonia. Some spermogonia produced only spermatia in their cavity; others formed spermatia and teliospores, and some eventually converted into telia.

13.
J Nanobiotechnology ; 22(1): 600, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367412

RESUMO

Aortic dissection (AD) is a devastating disease with a high mortality rate. Exosomes derived from mesenchymal stem cells (exo-MSCs) offer a promising strategy to restore aortic medial degeneration and combat ferroptosis in AD. However, their rapid degradation in the circulatory system and low treatment efficiency limit their clinical application. Methylacrylated gelatin (Gelma) was reported as a matrix material to achieve controlled release of exosomes. Herein, exo-MSCs-embedded in Gelma hydrogels (Gelma-exos) using ultraviolet light and three-dimensional (3D) printing technology. These Gelma-exos provide a sustained release of exo-MSCs as Gelma gradually degrades, helping to restore aortic medial degeneration and prevent ferroptosis. The sustained release of exosomes can inhibit the phenotypic switch of vascular smooth muscle cells (VSMCs) to a proliferative state, and curb their proliferation and migration. Additionally, the 3D-printed Gelma-exos demonstrated the ability to inhibit ferroptosis in vitro, in vivo and ex vivo experiments. In conclusion, our Gelma-exos, combined with 3D-printed technology, offer an alternative treatment approach for repairing aortic medial degeneration and ferroptosis in AD, potentially reducing the incidence of aortic dissection rupture.


Assuntos
Dissecção Aórtica , Exossomos , Ferroptose , Hidrogéis , Células-Tronco Mesenquimais , Músculo Liso Vascular , Miócitos de Músculo Liso , Impressão Tridimensional , Exossomos/metabolismo , Ferroptose/efeitos dos fármacos , Animais , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Camundongos , Gelatina/química , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ratos , Aorta , Movimento Celular/efeitos dos fármacos
14.
J Cell Physiol ; : e31454, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370679

RESUMO

Atherosclerosis remains a major contributor to cardiovascular disease, the leading cause of global morbidity and mortality. Despite the elucidation of several molecular, biochemical, and cellular aspects that contribute to the etio-pathogenesis of atherosclerosis, much remains to be understood about the onset and progression of this disease. Emerging evidence supports a role for exosomes in the cellular basis of atherosclerosis. Indeed, exosomes of activated monocytes seem to accentuate a positive feedback loop that promotes recruitment of pro-inflammatory leukocytes. Moreover, in addition to their role in promoting proliferation and invasion of vascular smooth muscle cells, exosomes can also induce neovascularization within lesions and increase endothelial permeability, two important features of fibrous plaques. Depending on their sources and cargo, exosomes can also induce clot formation and contribute to other hallmarks of atherosclerosis. Taken together, it is becoming increasingly evident that a better understanding of exosome biology is integral to elucidating the pathogenesis of atherosclerosis, and may thus provide insight into a potentially new therapeutic target for this disease.

15.
Plant J ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383323

RESUMO

Plant leaves play a pivotal role in automated species identification using deep learning (DL). However, achieving reproducible capture of leaf variation remains challenging due to the inherent "black box" problem of DL models. To evaluate the effectiveness of DL in capturing leaf shape, we used geometric morphometrics (GM), an emerging component of eXplainable Artificial Intelligence (XAI) toolkits. We photographed Ranunculus auricomus leaves directly in situ and after herbarization. From these corresponding leaf images, we automatically extracted DL features using a neural network and digitized leaf shapes using GM. The association between the extracted DL features and GM shapes was then evaluated using dimension reduction and covariation models. DL features facilitated the clustering of leaf images by source populations in both in situ and herbarized leaf image datasets, and certain DL features were significantly associated with biological leaf shape variation as inferred by GM. DL features also enabled leaf classification into morpho-phylogenomic groups within the intricate R. auricomus species complex. We demonstrated that simple in situ leaf imaging and DL reproducibly captured leaf shape variation at the population level, while combining this approach with GM provided key insights into the shape information extracted from images by computer vision, a necessary prerequisite for reliable automated plant phenotyping.

16.
Pathol Res Pract ; 263: 155639, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39383735

RESUMO

BACKGROUND / PURPOSE: The progression of epithelial to mesenchymal tissue (EMT) is a highly intricate process that facilitates the transformation of cancer cells, allowing them to changeover their characteristic epithelial properties to mesenchymal attributes. This notable change empowers the cells with enhanced mobility and the ability to migrate to distant locations. Furthermore, it is imperative to adopt the idea of macrophage tumor cell fusion to achieve comprehensive considerate of this phenomenon. Our primary objective was to conduct a thorough investigation of macrophage-restricted antigens expression, specifically CD68 and CD163, in malignant epithelial cells of oral cavity squamous cell carcinoma (OSCC) to elucidate aforementioned perceptions. MATERIALS AND METHODS: CD68 and CD163 immunohistochemical expression were assessed in oral squamous cell carcinoma (OSCC), encompassing both the neoplastic cells and the tumor-associated macrophages (TAMs). RESULTS: Both CD68 and CD163 antigens were revealed in OSCC malignant epithelial cells in a granular cell pattern, localized in membrane and cytoplasm of tumor cells respectively as well as in the infiltrating TAMs. CONCLUSION: The macrophage antigens were not limited to the infiltrating tumor-associated macrophages (TAMs), but were also observed in a substantial proportion of OSCC malignant epithelial cells within the tumor parenchyma. This particular expression pattern may represent a subset of tumor cells that have undergone an epithelial to a mesenchymal phenotypic transition. In addition, fusion of macrophages with tumor cells cannot be excluded; both might be associated with increased metastatic activity of OSCC.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39375215

RESUMO

BACKGROUND: Gut microbiota and depression have garnered attention. The dietary index for gut microbiota (DI-GM) is a newly proposed index that reflects the diversity of gut microbiota, yet its association with depression remains unstudied. METHODS: Data from the National Health and Nutrition Examination Survey were analyzed. Depression was assessed using Patient Health Questionnaire (PHQ-9). Dietary recall data were used to calculate the DI-GM (including components beneficial and unfavorable to gut microbiota). Multivariable weighted logistic and linear regression were employed to investigate the association of DI-GM with depression and total PHQ-9 score. The potential mediating role of phenotypic age and body mass index (BMI) was explored. Secondary analyses included subgroup analyses, restricted cubic spline (RCS), and multiple imputation. RESULTS: A higher DI-GM and beneficial gut microbiota score were associated with a lower prevalence of depression (DI-GM: OR = 0.94, 95% CI = 0.89, 0.99; beneficial gut microbiota score: OR = 0.88, 95% CI = 0.82, 0.94) and lower total PHQ-9 score (DI-GM: ß=-0.09, 95% CI=-0.14, -0.04; beneficial gut microbiota: ß=-0.15, 95% CI=-0.21, -0.08). RCS indicated a non-linear relationship between DI-GM and depression. A significant mediating effect of phenotypic age (proportion of mediation: 19.81%, 95% CI: 12.86-63.00%) and BMI (proportion of mediation: 16.49%, 95% CI: 12.87-62.00%) was observed. CONCLUSIONS: The newly proposed DI-GM was negatively associated with the prevalence of depression and total PHQ-9 score. Mediation analyses demonstrated a significant mediating effect of phenotypic age and BMI.

18.
Evolution ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382343

RESUMO

Organisms that are adapting to long term environmental change almost always deal with mul- tiple environments and trade-offs that affect their optimal phenotypic strategy. Here we combine the idea of repeated variation or heterogeneity, like seasonal shifts, with long-term directional dy- namics. Using the framework of fitness sets, we determine the dynamics of the optimal phenotype in two competing environments encountered with different frequencies, one of which changes with time. When such an optimal strategy is selected for in simulations of evolving populations, we observe rich behavior that is qualitatively different from and more complex than adaptation to long-term change in a single environment. The probability of survival and the critical rate of environmental change above which populations go extinct depend crucially on the relative fre- quency of the two environments and the strength and asymmetry of their selection pressures. We identify a critical frequency for the stationary environment, above which populations can escape the pressure to constantly evolve by adapting to the stationary optimum. In the neighborhood of this critical frequency, we also find the counter-intuitive possibility of a lower bound on the rate of environmental change, below which populations go extinct, and above which a process of evolutionary rescue is possible.

19.
Sci Total Environ ; 954: 176772, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378945

RESUMO

Climate change is altering not only the mean conditions of marine environments, but also their temporal variability and predictability. As these alterations are not uniform across seascapes, their biological effects are expected to accentuate intra-specific differences in the adaptive capacity (e.g., plasticity and evolutionary potential) of natural populations. To test this theoretical framework, we assessed the phenotypic and genetic profiles of mussel from three study sites across a multi-driver heterogeneous environmental mosaic in Chilean Patagonia. Our study reveals that temporal variability, predictability, and exposure to extreme events (low pH/low salinity), collectively, can modulate the plasticity and optimal conditions of mussels. Despite these phenotypic differences, we observed low genetic differentiation, likely resulting from significant gene flow induced by aquaculture, ultimately diminishing variation among individuals from different geographic areas. Our findings underscore how variability and predictability are essential factors shaping phenotypic diversity, even at small spatial scales. Balancing these factors could enhance species resilience and ecological success, crucial for biodiversity conservation amidst climate change.

20.
Proc Biol Sci ; 291(2032): 20241892, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39378989

RESUMO

Limited evidence suggests that variation in phenotypic plasticity within populations may arise largely from environmental sources, thereby constraining its evolvability. This is of concern for temperature-sensitive metabolism in the face of climate change. We quantified the relative influence of the developmental environment versus genes on the metabolic plasticity of avian embryos to temperature. We partially cross-fostered 602 house sparrow eggs (Passer domesticus), measured the heart rate plasticity of these embryos to egg temperature and partitioned variance in plasticity. We found that the foster (incubation) environment was the sole meaningful source of variance in embryonic plasticity (not genes, pre-laying effects or ambient conditions). In contrast to heart rate plasticity, offspring growth was influenced by the foster environment, genes/pre-laying parental effects and ambient conditions. Although embryonic plasticity to temperature varied in this population, these results suggest that it is unlikely to evolve quickly. Nevertheless, the expression of this plasticity may be able to shift between generations in response to changes in the developmental environment. Whether the multidimensional plasticity of heart rate to both current temperature and the developmental environment is itself an adaptive, evolved trait allowing avian embryos to optimize their metabolic plasticity to their current environment remains to be tested.


Assuntos
Pardais , Temperatura , Animais , Pardais/fisiologia , Pardais/embriologia , Frequência Cardíaca , Embrião não Mamífero/fisiologia , Meio Ambiente , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA