Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1433828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246810

RESUMO

Introduction: Phosphate-solubilizing bacteria that function through acidification (organic acid synthesis) or mineralization (production of enzymes such as phytase and phosphatases) have been explored as a biotechnological alternative to enhance plant access to phosphorus (P) retained in organic and inorganic forms in agricultural soils. This study tested the hypothesis that applying a biofertilizer composed of a recognized phosphate-solubilizing bacterium (Bacillus velezensis - endophytic strain BVPS01) and an underexplored plant growth-promoting bacterium (Lysinibacillus fusiformis - endophytic strain BVPS02) would improve the growth and grain yield of Glycine max L. plants. Methods: Initial in vitro tests assessed the functional traits of these bacteria, and a mix of strains BVPS01 and BVPS02 was produced and tested under field conditions to evaluate its agronomic efficiency. Results: The results confirmed the hypothesis that the tested biofertilizer enhances the agronomic performance of G. max plants in the field. The B. velezensis strain (BVPS01) was found to be more effective than the L. fusiformis strain (BVPS02) in solubilizing phosphates via the phosphatase enzyme production pathway, indicated by the expression of the phoC and phoD genes. In contrast, L. fusiformis was more effective in solubilizing phosphates through organic acid and phytase-related pathways, in addition to synthesizing indole-3-acetic acid and increasing the mitotic index in the root meristem of G. max plants. These strains exhibited biological compatibility, and the formulated product based on these rhizobacteria enhanced root development and increased the number of nodules and flowers, positively affecting 1000-grain weight, grain yield, and grain P content. Discussion: Thus, the tested biofertilizer demonstrated potential to improve root growth and increase both the yield and quality of soybean crops, making it a sustainable and low-cost strategy.

2.
Braz J Microbiol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134912

RESUMO

The phosphate (P)-solubilizing potential of rhizobia isolated from active root nodules of Brazilian native Mimosa and Desmodium was assessed. Out of the 15 strains selected, five Paraburkholderia isolated from Mimosa spp. grown in rocky outcrops stood out. The Ca3(PO4)2-solubilizing efficiency of these strains ranged from 110.67 to 356.3 mgL-1, with less expressive results for FePO4 and Al(H2PO4)3, that might be attributed to the low solubility of these two P compounds. Paraburkholderia strains CNPSo 3281 and CNPSo 3076 were the most efficient siderophore producers (44.17 and 41.87 µMol EDTA) and two of the top FePO4 solubilizers. Acidification of the culture media was observed for all the strains and P sources. Regarding Ca3(PO4)2 solubilization, the main organic acids detected were glucuronic (an important component of rhizobia exopolysaccharides) and gluconic acids. Genomic analysis of P. nodosa CNPSo 3281 and CNPSo 3076 along with other phosphate-solubilizing Paraburkholderia species of the genus pointed out a conserved gene organization of phoUBR, pstSCAB, ppk and ppx. Greenhouse experiment revealed that P. nodosa CNPSo 3281 and CNPSo 3076 promoted maize growth under low P. Our results indicate the relevance of native rhizobia as multifunctional plant-associated bacteria and the rocky outcrops ecosystems as hotspots for bioprospection.

3.
Curr Res Microb Sci ; 6: 100207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38187997

RESUMO

Bacterial isolated from rhizospheric soil associated with the semi-desertic plant Coronilla juncea L. were screened for 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity, a common trait for plant-growth-promoting rhizobacteria (PGPR). Among bacterial isolates, strain DBA51 showed phosphate solubilizing index (PSI), producing indole acetic acid (IAA), and with the hemolysis-negative test. Sequencing and analysis of the 16S rDNA gene identified DBA51 as Enterobacter. DBA51 did not show antagonistic activity in vitro against bacterial (Clavibacter michiganensis, Pseudomonas syringae pv. tomato DC3000 and Pectobacterium cacticidum FHLGJ22) and fungal phytopathogens (Alternaria sp., Fusarium oxysporum fsp. lycopersici, Fusarium oxysporum fsp. cubense M5, and Rhizoctonia sp.). Root inoculations with DBA51 in tomato (Solanum lycopersicum L.) and tobacco (Nicotiana tabacum L.) plants were performed under greenhouse conditions. Plant height (20 %) and root biomass (40 %) were significantly enhanced in tomato plants inoculated with DBA51 compared to non-inoculated plants, although for tobacco plants, only root biomass (27 %) showed significant differences with DBA51. In addition, physiological parameters such as photosynthetic rate (µmol CO2 m-2 s-1), stomatal conductance (mol H2O m-2 s-1), and transpiration rate (mmol H2O m-2 s-1) were also evaluated, and no differences were detected between DBA51-inoculated and control treatment in tomato and tobacco leaves. The observed results indicate that the DBA51 strain could be used as a biofertilizer to improve yields of horticultural crops.

4.
Microorganisms ; 10(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36557594

RESUMO

Strawberry (Fragaria x ananassa, Duch.) is an important crop worldwide. However, since it is a highly demanding crop in terms of the chemical conditions of the substrate, a large part of strawberry production implies the application of large amounts of fertilizers in the production fields. This practice can cause environmental problems, in addition to increases in the fruit's production costs. In this context, applying plant growth-promoting bacteria in production fields can be an essential strategy, especially thanks to their ability to stimulate plant growth via different mechanisms. Therefore, this study aimed to test in vitro and in vivo the potential of bacteria isolated from strawberry leaves and roots to directly promote plant growth. The isolates were tested in vitro for their ability to produce auxins, solubilize phosphate and fix nitrogen. Isolates selected in vitro were tested on strawberry plants to promote plant growth and increase the accumulation of nitrogen and phosphorus in the leaves. The tested isolates showed an effect on plant growth according to biometric parameters. Among the tested isolates, more expressive results for the studied variables were observed with the inoculation of the isolate MET12M2, belonging to the species Brevibacillus fluminis. In general, bacterial inoculation induced strain-dependent effects on strawberry growth. In vitro and in vivo assays showed the potential use of the B. fluminis MET12M2 isolate as a growth promoter for strawberries.

5.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432865

RESUMO

In the present study, the nematicidal and acaricidal activity of three Enterobacter endophytic strains isolated from Mimosa pudica nodules was evaluated. The percentages of mortality of Enterobacter NOD4 against Panagrellus redivivus was 81.2%, and against Nacobbus aberrans 70.1%, Enterobacter NOD8 72.4% and 62.5%, and Enterobacter NOD10 64.8% and 58.7%, respectively. While against the Tyrophagus putrescentiae mite, the mortality percentages were 68.2% due to Enterobacter NOD4, 64.3% due to Enterobacter NOD8 and 77.8% due to Enterobacter NOD10. On the other hand, the ability of the three Enterobacter strains to produce indole acetic acid and phosphate solubilization, characteristics related to plant growth-promoting bacteria, was detected. Bioinformatic analysis of the genomes showed the presence of genes related to IAA production, phosphate solubilization, and nitrogen fixation. Phylogenetic analyzes of the recA gene, phylogenomics, and average nucleotide identity (ANI) allowed us to identify the strain Enterobacter NOD8 related to E. mori and Enterobacter NOD10 as E. asburiae, while Enterobacter NOD4 was identified as a possible new species of this species. The plant growth-promoting, acaricidal and nematicidal activity of the three Enterobacter strains makes them a potential agent to include in biocontrol alternatives and as growth-promoting bacteria in crops of agricultural interest.

6.
Front Plant Sci ; 13: 983127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275544

RESUMO

Microbial crop protection products based on Trichoderma have the ability to display multifunctional roles in plant protection, such as pathogen parasitism, enhance nutrient availability and stimulate plant growth, and these traits can be used to enhance the overall agronomic performance of a variety of crops. In the current study, we explored the multifunctional potential of two indigenous Brazilian strains of Trichoderma (T. asperelloides CMAA 1584 and T. lentiforme CMAA 1585) for their capability of controlling Sclerotinia sclerotiorum, a key plant pathogen of cotton, and for their ability of growth promotion in cotton plants (Gossypium hirsutum). Both strains were able to solubilize mineral phosphorus (CaHPO4), to release volatile organic compounds that impaired the mycelial growth of S. sclerotiorum, and to promote the growth of cotton plants under greenhouse conditions. In dual culture, Trichoderma strains reduced the growth rate and the number of sclerotia formed by S. sclerotiorum. By treating sclerotia with conidial suspensions of these Trichoderma strains, a strong inhibition of the myceliogenic germination was observed, as a result of the marked mycoparasitic activity exerted on the sclerotia. The parasitism over S. sclerotiorum was more effective with T. asperelloides CMAA 1584, whilst the biostimulant effects on cotton growth were more pronounced with T. lentiforme CMAA 1585, which also showed a higher capacity of phosphate solubilization. Thus, T. asperelloides CMAA 1584 displays higher efficiency in controlling S. sclerotiorum, while T. lentiforme CMAA 1585 is more suitable as a biostimulant due to its ability to promote growth in cotton plants. Overall, these Trichoderma strains may be used in mixture to provide both pathogen control and promotion of plant growth, and this strategy will support growers in minimizing the use of synthetic fertilizers and fungicides against white mold in cotton crops.

7.
3 Biotech ; 12(10): 262, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36091086

RESUMO

The rhizosphere yeast Torulaspora globosa is known to produce indole acetic acid (IAA) and to solubilize minerals. Due to the prospective use of this yeast as a biostimulant for agricultural applications, this work aimed to optimize the cultural conditions for both IAA production and phosphate solubilization. For phosphate solubilization, the temperature (20, 25 and 30 °C), initial medium pH (3.0, 5.0, and 7.0), and shaker speed (without mixing, 100 rpm, 150 rpm, and 200 rpm) were considered using the one-factor-at-a-time (OFAT) design. Temperature of 25 °C, initial medium pH 7.0, and static cultures were the conditions of greatest phosphate solubilization, with 40% of the total phosphorus content solubilized from calcium phosphate (419.86 mg L-1) after 48 h. By using the response surface methodology, the maximum IAA production (217.73 µg mL-1) was obtained with the highest initial pH 7.0, the lowest nitrogen, and glucose concentrations (5 g L-1 and 10 g L-1, respectively) and the lowest agitator speed (100 rpm). Further tests indicated that nitrogen affected significantly IAA production and the absence of nitrogen in the medium promoted higher IAA production (457 µg mL-1). The results obtained here may contribute to the scaling up for industrial and agricultural applications of a yeast-based product with T. globosa.

8.
Front Plant Sci ; 13: 884716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968102

RESUMO

The genus Paspalum belongs to the family Poaceae and has several species that are native to Brazil. The Paspalum Germplasm Bank (GB) of the Brazilian Agricultural Research Corporation comprises approximately 450 accessions from 50 species. Among these accessions, Paspalum atratum (BGP 308) has economic potential for forage purposes. However, the endophytic and rhizospheric microbial communities within this accession and their ability to promote plant growth remain unknown. The present study aimed to isolate the endophytic and rhizospheric bacteria associated with P. atratum and to assess their potential for plant growth improvement, so-called plant growth-promoting bacteria (PGPB). For the in vitro tests, the ability of nitrogen-fixing bacteria (NFB), phosphate solubilization (PS) and indoleacetic acid (IAA) production were evaluated. A total of 116 endophytic and rhizosphere bacteria were obtained from the isolation. In the in vitro tests, 43 (37.00%) of these isolates showed positive NFB, PS, and IAA results. These isolates were identified by 16S rDNA sequencing. The phosphate solubilization index (PSI) ranged from 2 to 3.61, all 43 strains performed biological nitrogen fixation and the IAA production ranged from 12.85 to 431.41 µg ml-1. Eight of these 43 isolates were evaluated in vivo in a greenhouse using P. atratum caryopsis. The pots were filled with soil prepared with three different phosphate sources and one control without phosphate. After growth, the plants were submitted to morphological, bromatological and chemical determination. Data were analyzed using analysis of variance (ANOVA) and principal component analysis (PCA). In the in vivo test, treatments 105 (Pseudomonas sp.) and 458 (Pseudomonas sp.) were the most significant for the crystalline phosphate source, 109 (Bacillus sp.) for the sedimentary phosphate source and, as for the soluble phosphate source most treatments that received bacterial isolates had higher phosphorus content in the dry matter than the uninoculated soluble phosphate control. The 105FCR (crystalline phosphate + Pseudomonas sp.), 109FSE (sedimentary phosphate + Bacillus sp.), and 110 FSE (sedimentary phosphate + Enterobacter sp.) treatments showed the best results for plant growth promotion. This work made it possible to determine the bacterial community associated with P. atratum (BGP308) and to obtain new potential plant growth-promoting strains.

9.
Arq. Inst. Biol. (Online) ; 89: e00162021, 2022. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1416879

RESUMO

Endophytic bacteria Bacillus safensis RS95 and Pseudomonas hibiscicola RS121 were evaluated for their ability to promote the growth of rice seedlings and produce indole-acetic acid (IAA) and siderophores and to solubilize phosphates. 'Guri' rice seeds were immersed in bacterial endophyte cell suspensions (separated and two-strain mixed), as well as in Escherichia coli DH5α, phosphate-buffered saline (PBS) and water treatments (negative controls). Seeds were sown on agar-water in Petri plates placed vertically at an angle of 65°. The ability of plant growth-promoting endophytic bacteria (PGPEB) to produce IAA and siderophores was determined by Salkowski colorimetric and chrome azurol S (CAS) assays, respectively. Mineral phosphate solubilization activity was calculated by inoculating the endophytes onto medium containing insoluble phosphate. PGPEB showed a positive effect on the growth of rice seedlings, causing a mean growth of shoots and primary-roots of 60 and 67%, respectively. Bacterial strains also showed positive traits for IAA and siderophore production, as well as phosphate-solubilization activity


Assuntos
Pseudomonas , Oryza/crescimento & desenvolvimento , Bacillus , Sideróforos , Endófitos , Ácidos Indolacéticos/análise , Fosfatos
10.
J Basic Microbiol ; 61(7): 662-673, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057226

RESUMO

To evaluate the natural occurrence of the plant growth-promoting bacterium Azospirillum brasilense and petunia plants, local strains were isolated and characterized by biochemical and molecular methods. Three strains were assessed in greenhouse conditions using Petunia × hybrida Ultra™. Treatments: Plants without bacterial inoculation or chemical fertilization; fertilized with NPK and KNO3 ; and independently inoculated with the strains 2A1, 2A2, and 2E1 by submerging their roots in a bacterial suspension (~106 CFU·ml-1 ). Root length, dry weight of roots and shoots, leaf area, leaf greenness, and nutrient content were evaluated. The number of days from transplanting to the opening of the first flower and the number of flowers per plant were also determined. As a result, five isolates were characterized as A. brasilense, showing the capacity to produce indoles and siderophores, to solubilize phosphate, nitrogenase activity, and nifH-PCR amplification. In general, all the parameters of the plant assay were improved in plants inoculated with A. brasilense, with variations among the strains, as well as the onset of flowering and the number of flowers per plant, compared with uninoculated or fertilized plants. This is the first report on the natural occurrence of A. brasilense in petunia with the capacity to improve plant growth and flowering.


Assuntos
Azospirillum brasilense/fisiologia , Magnoliopsida/microbiologia , Petunia/crescimento & desenvolvimento , Petunia/microbiologia , Desenvolvimento Vegetal , Azospirillum brasilense/genética , Biomassa , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia
11.
Braz J Microbiol ; 52(1): 251-256, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141351

RESUMO

The wide use of whole-genome sequencing approach in the modern genomic era has opened a great opportunity to reveal the prospective applications of halophilic bacteria. Robertkochia marina CC-AMO-30DT is one of the halophilic bacteria that was previously taxonomically identified without any inspection on its biotechnological potential from a genomic aspect. In this study, we present the whole-genome sequence of R. marina and demonstrated the ability of this bacterium in solubilizing phosphate by producing phosphatase. The genome of R. marina has 3.57 Mbp and contains 3107 predicted genes, from which 3044 are protein coding, 52 are non-coding RNAs, and 11 are pseudogenes. Several phosphatases such as alkaline phosphatases and pyrophosphatases were mined from the genome. Further genomic study (phylogenetics, sequence analysis, and functional mechanism) and experimental data suggested that the alkaline phosphatase produced by R. marina could potentially be utilized in promoting plant growth, particularly for plants on saline-based agricultural land.


Assuntos
Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Genoma Bacteriano , Fosfatos/metabolismo , Sequenciamento Completo do Genoma , Agricultura/métodos , Flavobacteriaceae/enzimologia , Fosfodiesterase I/genética , Filogenia , Pirofosfatases/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solubilidade
12.
Arch Microbiol ; 203(3): 1089-1105, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33161466

RESUMO

This study aimed to evaluate the genetic diversity of bacterial community associated to different sugarcane genotypes, association habitat and phenological phase of the culture, as well as to isolate, to identify and to characterize your potential for plant growth-promoting. Root and rhizospheric soil samples from RB 92579 and RB 867515 varieties were collected at 120 and 300 days after regrowth (DAR). The diversity of bacterial was evaluated through of the 16S rRNA and nifH genes. We found greater genetic diversity in the root endophytic habitat at 120 DAR. We identify the genera Burkholderia sp., Pantoea sp., Erwinia sp., Stenotrophomonas sp., Enterobacter sp. and Pseudomonas sp. The genera Bacillus sp. and Dyella sp. were only identified in the variety RB 92579. We found indices above 50% for biological nitrogen fixation, production of indole acetic acid and phosphate solubilization, showing that the use of these bacteria in biotechnological products is very promising.


Assuntos
Bactérias/genética , Ecossistema , Variação Genética , Raízes de Plantas/microbiologia , Saccharum/microbiologia , Genótipo , Ácidos Indolacéticos , Fixação de Nitrogênio/fisiologia , Desenvolvimento Vegetal/fisiologia , RNA Ribossômico 16S/genética , Rizosfera
13.
Acta amaz. ; 51(1): 10-19, mar. 2021. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-30253

RESUMO

Despite advances in the identification and characterization of endophytic bacteria in various plant species worldwide, little is known about such microorganisms in plants from the Amazon region. Previous studies reported that Piper tuberculatum endophytic Pseudomonas (isolates Pt12 and Pt13, identified as Pseudomonas putida and Pseudomonas sp., respectively) were able to inhibit the in vitro growth of Fusarium solani f. sp. piperis, which causes root rot in black pepper (Piper nigrum), and that Pt13 promoted the growth of P. nigrum. Therefore, the aim here was to characterize these bacteria regarding their ability to produce plant growth-promoting substances [siderophores, indol acetic acid (IAA) and soluble phosphate]. Chrome azurol S assays were performed for the detection of siderophores. For qualitative and quantitative assays of IAA production and phosphate solubilization, Salkowski´s reagent and NBRIP medium with molybdenum blue reagent, respectively, were used. Results revealed that Pt12 and Pt13 were able to synthesize IAA, mainly under a high concentration of L-tryptophan, indicating that they are IAA-producing bacteria, probably through a tryptophan-dependent biosynthesis pathway. The presence of P. nigrum extract positively influenced the IAA production by Pt12 and Pt13, with highest values of 125 and 90 µg mL-1, respectively. In addition, Pt12 was positive for the production of siderophores and produced 56.56 µg mL-1 of soluble phosphate. In contrast, Pt13 showed no ability to produce siderophores or to solubilize phosphate. Besides their potential in controlling plant diseases, Pt12 and Pt13 have potential as biofertilizers, favoring sustainable agriculture.(AU)


Apesar dos avanços na identificação e caracterização de bactérias endofíticas em espécies vegetais em todo o mundo, pouco se sabe sobre esses microrganismos em plantas da região amazônica. Estudos anteriores mostraram que Pseudomonas de Piper tuberculatum (isolados Pt12 e Pt13, identificados como Pseudomonas putida e Pseudomonas sp., respectivamente) são capazes de inibir Fusarium solani f. sp. piperis, que causa a podridão das raízes da pimenteira-do-reino (Piper nigrum), e que Pt13 promoveu o crescimento de P. nigrum. Portanto, o objetivo do presente trabalho foi caracterizar essas bactérias quanto à capacidade de produzir substâncias potencialmente bioestimulantes para o crescimento vegetal [sideróforos, ácido indol acético (AIA) e fosfato solúvel]. Ensaios de Cromo Azurol S foram realizados para detecção de sideróforos. Para os ensaios qualitativos e quantitativos de produção de AIA e solubilização de fosfato, foram utilizados o reagente de Salkowski e o meio NBRIP com azul de molibdênio, respectivamente. Os resultados revelaram que Pt12 e Pt13 sintetizaram AIA, principalmente sob alta concentração de L-triptofano, indicando que provavelmente utilizam uma via de biossíntese dependente deste aminoácido. A presença do extrato de P. nigrum influenciou positivamente a produção de AIA por Pt12 e Pt13, com valores máximos de 125 e 90 µg mL-1, respectivamente. Além disso, Pt12 foi positiva para produção de sideróforos e produziu 56.56 µg.mL-1 de fosfato solúvel. Em contraste, Pt13 não produziu sideróforos, nem solubilizou fosfato. Além do potencial de controle de doenças de plantas, Pt12 e Pt13 têm potencial como biofertilizantes, favorecendo a agricultura sustentável.(AU)


Assuntos
Piper nigrum/microbiologia , Endófitos/química , Pseudomonas/classificação , Sideróforos , Ácidos Indolacéticos
14.
Acta Sci. Biol. Sci. ; 43: e51737, 2021. tab, ilus
Artigo em Inglês | VETINDEX | ID: vti-764583

RESUMO

Endophytes are growth-promoting agents capable of synthesizing phytohormones, uptaking nutrients, and controlling pathogens. There is a strong potential to exploit them in the agriculture field like biofertilizers and biocontrol agents. In this work, we aimed to evaluate endophytic fungi isolated from Pachystachys lutea for their potential to solubilize phosphate, synthesise indole acetic acid (IAA), antagonize phytopathogens, and promote plant growth under greenhouse conditions. The phosphate solubilization efficiency was assessed on Pikovskayas agar medium. For analysis of IAA production, mycelia plugs of endophytes were cultured in Potato Dextrose Broth medium supplemented with L-tryptophan, with Salkowski Reagent, and the absorbance of the culture was measured. The antagonism evaluation of strain Alternaria sp. PL75 against phytopathogens was performed using the paired-culture technique. The promotion of plant growth provided by Alternaria sp. PL75 was evaluated in tomato plants. All strains evaluated were able to solubilize phosphate; however, the strain Alternaria sp. PL75 was the most effective (4.29). Two strains, Nemania sp. PL27 and Alternaria sp. PL75, produced 1.86 and 1.73 & 956;g mL-1 of IAA, respectively. In the antagonism assay, the endophyte Alternaria sp. PL75 and its fungal extract showed the best results against the pathogen Moniliophthora perniciosa. The greenhouse experiment result showed the endophyte Alternaria sp. PL75 increased the plantlets emergency speed index and the percentage of germination from 60 to 81.63%. It was also observed a statistical significance in the shoot length of the treated plants with the endophyte suspension (55.38 cm) compared to the control (41.67 cm).(AU)


Assuntos
Lamiales/crescimento & desenvolvimento , Endófitos , Ácido Acético/análise , Fosfatos
15.
Acta sci., Biol. sci ; Acta sci., Biol. sci;43: e51737, 2021. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1460974

RESUMO

Endophytes are growth-promoting agents capable of synthesizing phytohormones, uptaking nutrients, and controlling pathogens. There is a strong potential to exploit them in the agriculture field like biofertilizers and biocontrol agents. In this work, we aimed to evaluate endophytic fungi isolated from Pachystachys lutea for their potential to solubilize phosphate, synthesise indole acetic acid (IAA), antagonize phytopathogens, and promote plant growth under greenhouse conditions. The phosphate solubilization efficiency was assessed on Pikovskaya’s agar medium. For analysis of IAA production, mycelia plugs of endophytes were cultured in Potato Dextrose Broth medium supplemented with L-tryptophan, with Salkowski Reagent, and the absorbance of the culture was measured. The antagonism evaluation of strain Alternaria sp. PL75 against phytopathogens was performed using the paired-culture technique. The promotion of plant growth provided by Alternaria sp. PL75 was evaluated in tomato plants. All strains evaluated were able to solubilize phosphate; however, the strain Alternaria sp. PL75 was the most effective (4.29). Two strains, Nemania sp. PL27 and Alternaria sp. PL75, produced 1.86 and 1.73 & 956;g mL-1 of IAA, respectively. In the antagonism assay, the endophyte Alternaria sp. PL75 and its fungal extract showed the best results against the pathogen Moniliophthora perniciosa. The greenhouse experiment result showed the endophyte Alternaria sp. PL75 increased the plantlets emergency speed index and the percentage of germination from 60 to 81.63%. It was also observed a statistical significance in the shoot length of the treated plants with the endophyte suspension (55.38 cm) compared to the control (41.67 cm).


Assuntos
Endófitos , Fosfatos , Lamiales/crescimento & desenvolvimento , Ácido Acético/análise
16.
Acta amaz. ; 49(4): 257-267, Oct.-Dec. 2019. mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-24132

RESUMO

Brazil nut is a very important nontimber forest product in the Amazon region. Propagation of this tree still represents a challenge due to slow and uneven seed germination. In this context, plant growth-promoting bacteria can facilitate the process of propagation. The aims of this study were to isolate and characterize endophytic bacteria from the roots of Brazil nut trees in native terra firme forest and cultivation areas in northern Brazil, and to identify mechanisms by which bacteria act in plant growth promotion. Overall, 90 bacterial isolates were obtained from the roots of Brazil nut trees in monoculture, agroforestry and native forest areas by using different semisolid media. The isolates were characterized by sequencing the 16S rRNA gene. Plant growth-promoting characteristics were evaluated by the presence of the nifH gene, aluminum phosphate solubilization and the production of indole compounds. The isolates were affiliated with 18 genera belonging to 5 different classes (α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacilli and Actinobacteria). The genus Bacillus was predominant in the forest and monoculture areas. Fourteen isolates presented the nifH gene. Most of the bacteria were able to solubilize aluminum phosphate and synthetize indole compounds. The results indicated high diversity of endophytic bacteria present among the roots of Brazil nut trees, mainly in the agroforestry area, which could be related to soil attributes. Among the 90 isolates, the 22 that presented the best results regarding plant growth promotion traits were good candidates for testing in seedling production of Brazil nut trees.(AU)


A castanha-do-brasil é um produto florestal não madeireiro muito importante na região amazônica. A propagação desta árvore ainda representa um desafio, devido ao lento e irregular processo de germinação das sementes. Neste contexto, bactérias promotoras do crescimento vegetal podem facilitar o processo de propagação. O objetivo deste estudo foi isolar e caracterizar bactérias endofíticas em raízes de castanha-do-Brasil em floresta de terra firme e em áreas cultivadas no norte do Brasil, e identificar alguns mecanismos de promoção do crescimento vegetal executados por essas bactérias. No total, 90 isolados bacterianos foram obtidos de raízes de castanha-do-Brasil em monocultura, agrofloresta e floresta nativa, usando diferentes meios de cultivo semi-sólidos. Os isolados foram caracterizados pelo sequenciamento do gene 16S rRNA. As características de promoção do crescimento vegetal foram avaliadas através da presença do gene nifH, solubilização de fosfato de alumínio e produção de compostos indólicos. Os isolados foram afiliados a 18 gêneros, pertencentes a cinco diferentes classes (α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacilli e Actinobacteria). O gênero Bacillus foi predominante, principalmente nas áreas de floresta e monocultura. Quatorze isolados apresentaram o gene nifH. A maioria dos isolados foi capaz de solubilizar fosfato de alumínio e sintetizar compostos indólicos. Os resultados indicam uma elevada diversidade de bactérias endofíticas presente em raízes de castanha-do-Brasil, principalmente em área de agrofloresta, que pode estar relacionado aos atributos do solo. Entre os 90 isolados, 22 apresentaram os melhores resultados relacionados às características de promoção do crescimento vegetal, e são bons candidatos para testes em produção de mudas de castanha-do-Brasil.(AU)


Assuntos
Bertholletia/microbiologia , Raízes de Plantas/microbiologia , Fixação de Nitrogênio , Fosfatos , RNA Ribossômico 16S , Ecossistema Amazônico
17.
Acta amaz ; Acta amaz;49(4): 257-267, out. - dez. 2019.
Artigo em Inglês | LILACS | ID: biblio-1118924

RESUMO

Brazil nut is a very important nontimber forest product in the Amazon region. Propagation of this tree still represents a challenge due to slow and uneven seed germination. In this context, plant growth-promoting bacteria can facilitate the process of propagation. The aims of this study were to isolate and characterize endophytic bacteria from the roots of Brazil nut trees in native terra firme forest and cultivation areas in northern Brazil, and to identify mechanisms by which bacteria act in plant growth promotion. Overall, 90 bacterial isolates were obtained from the roots of Brazil nut trees in monoculture, agroforestry and native forest areas by using different semisolid media. The isolates were characterized by sequencing the 16S rRNA gene. Plant growth-promoting characteristics were evaluated by the presence of the nifH gene, aluminum phosphate solubilization and the production of indole compounds. The isolates were affiliated with 18 genera belonging to 5 different classes (α-Proteobacteria, ß-Proteobacteria, γ-Proteobacteria, Bacilli and Actinobacteria). The genus Bacillus was predominant in the forest and monoculture areas. Fourteen isolates presented the nifH gene. Most of the bacteria were able to solubilize aluminum phosphate and synthetize indole compounds. The results indicated high diversity of endophytic bacteria present among the roots of Brazil nut trees, mainly in the agroforestry area, which could be related to soil attributes. Among the 90 isolates, the 22 that presented the best results regarding plant growth promotion traits were good candidates for testing in seedling production of Brazil nut trees. (AU)


Assuntos
RNA Ribossômico 16S , Ecossistema Amazônico , Alcaloides Indólicos , Bertholletia , Fixação de Nitrogênio
18.
J Basic Microbiol ; 59(5): 487-495, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30768729

RESUMO

This study tested the solubilization of phosphorus by five actinobacterial strains in liquid media containing Ca3 PO4 ; AlPO4 or FePO4 as the sole phosphate source, and discusses the possible mechanisms involved in this process. P solubilization by different strains was accompanied by a significant drop in pH from 7.0 to 2.15-5.0 after 14 days. The efficiency of different strains depended on the P-source. Streptomyces spp. MM140 and MM141 were the most efficient in solubilizing Ca3 PO4 , MM136, and MM141 were the most efficient in solubilizing AlPO4 , while all strains were equally efficient in solubilizing FePO4 . Gluconic, oxalic, citric, malic, succinic, formic, and acetic acid were detected in the medium with Ca3 PO4 , while all except acetic acid were detected in the media with FePO4 or AlPO4 . Although we did not use an organic source of phosphorus in the media, all strains produced acid and alkaline phosphatase. It is concluded from this study that actinobacteria produced multiple organic acids followed by a decrease in the pH to solubilize phosphate salts. As well as producing phosphatase, these microorganisms were found to have different ways of making P available, suggesting an ecological advantage as they form part of soil microbiomes important for plants.


Assuntos
Actinobacteria/metabolismo , Fosfatos/metabolismo , Actinobacteria/classificação , Disponibilidade Biológica , Ácidos Carboxílicos/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Fosfatos/farmacocinética , Monoéster Fosfórico Hidrolases/metabolismo , Microbiologia do Solo , Especificidade da Espécie , Especificidade por Substrato
19.
Microbiol Res ; 218: 76-86, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30454661

RESUMO

Legumes establish symbiotic relationships with different microorganisms, which could function as plant growth promotion microorganisms (PGPM). The finding of new PGPM strains is important to increase plant production avoiding or diminishing the use of industrial fertilizers. Thus, in this work we evaluated the plant growth promotion traits of ten strains isolated from Mimosa pudica root nodules. According to the 16S rDNA sequence, the microorganisms were identified as Enterobacter sp. and Serratia sp. To the best of our knowledge this is the first report describing and endophytic interaction between Mimosa pudica and Enterobacter sp. These strains have some plant growth promoting traits such as phosphate solubilization, auxin production and cellulase and chitinase activity. Strains identified as Serratia sp. inhibited the growth of the phytopathogenic fungi Fusarium sp., and Alternaria solani and the oomycete Phytophthora capsici. According to their biochemical characteristics, three strains were selected to test their plant growth promoting activity in a medium with an insoluble phosphate source. These bacteria show low specificity for their hosts as endophytes, since they were able to colonize two very different legumes: Phaseolus vulgaris and M. pudica. Seedlings of P. vulgaris were inoculated and grown for fifteen days. Enterobacter sp. NOD1 and NOD10, promoted growth as reflected by an increase in shoot height as well as an increase in the size and emergence of the first two trifolia. We could localize NOD5 as an endophyte in roots in P. vulgaris by transforming the strain with a Green Fluorescent Protein carrying plasmid. Experiments of co-inoculation with different Rhizobium etli strains allowed us to discard that NOD5 can fix nitrogen in the nodules formed by a R. etli Fix- strain. The isolates described in this work show biotechnological potential for plant growth promoting activity and production of indoleacetic acid and siderophores.


Assuntos
Endófitos/metabolismo , Enterobacter/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Mimosa/microbiologia , Phaseolus/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Serratia/isolamento & purificação , Alternaria/crescimento & desenvolvimento , Quitinases/metabolismo , Endófitos/isolamento & purificação , Enterobacter/classificação , Enterobacter/genética , Fusarium/crescimento & desenvolvimento , Mimosa/crescimento & desenvolvimento , Phaseolus/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Serratia/classificação , Serratia/genética
20.
Rev. biol. trop ; Rev. biol. trop;66(3): 953-968, jul.-sep. 2018. tab, graf
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-977358

RESUMO

Resumen La orquídea Guarianthe skinneri está incluida en la norma NOM-059-ECOL-2010 de México como una especie amenazada. Con el fin de estudiar las BPCV (bacterias promotoras del crecimiento vegetal) en esta orquídea, se recolectaron 10 raíces de diferentes plantas para aislar bacterias asociadas a las raíces, que se analizaron mediante pruebas in vitro como: producción de AIA, fijación de nitrógeno, interacción con el hongo micorrízico Thanatephorus sp. cepa RG26 y solubilización de fosfato. De los 71 aislados bacterianos se caracterizaron 10 cepas mediante secuenciación con el marcador 16s rADN y se identificaron seis cepas: Sphingomonas sp., Sinorhizobium sp., Bacillus sp., Nocardia cerradoensis, Bacillus megaterium y Burkholderia phytofirmans. Se observó que la bacteria Sinorhizobium sp. produjo mayor cantidad de AIA (69.189 µg/ml) y Bacillus sp. presentó mayor reducción de acetileno (10.251 nmol cultivo/96 h). En las interacciones de las bacterias y el hongo RG26 se presentaron cuatro categorías (sumamente positivo, positivo, antagonismo 50-50 e inhibición). En relación a la solubilización de fosfato, la bacteria Burkholderia phytofirmans presentó mayor IS a las 48 y 96 hr con IS de 3.11 y 3.48, respectivamente. Los resultados indican que Bacillus sp. pudiera tener las mejores características para promover el desarrollo de la orquídea G. skinneri mediante la inoculación de semillas y plántulas.


Abstract The Guarianthe skinneri orchid is included in NOM-059-ECOL-2010, Mexico standard as an endangered species. In order to study PGPR (promoting growth plant rhizobacteria) from this orchid, 10 roots were collected from different plants to isolate bacteria associated with the roots, which were analyzed by in vitro tests such as: production of AIA, nitrogen fixation, interaction with the mycorrhizal fungus Thanatephorus sp. strain RG26 and phosphate solubilization. We obtain 71 bacterial isolates, 10 strains of them were characterized by sequencing with the 16d rDNA marker identifying six bacteria: Sphingomonas sp. Sinorhizobium sp. Bacillus sp. Nocardia cerradoensis, Bacillus megaterium and Burkholderia phytofirmans. We observed that the bacterium Sinorhizobium sp. produced a greater amount of AIA (69.189 μg/ml) and Bacillus sp. performed greater acetylene reduction (10.251 nmol cultivo/96h). In the interactions of the bacteria and the fungus RG26, four categories were presented (extremely positive, positive, antagonism 50-50 and inhibition). In relation to the solubilization of phosphate, Burkholderia phytofirmans presented higher IS after 48 and 96 hr with an IS of 3.11 and 3.48, respectively. The results indicate that Bacillus sp. it could have the best characteristics to promote the development of the G. skinneri orchid by inoculating seeds and seedlings. Rev. Biol. Trop. 66(3): 953-968. Epub 2018 September 01.


Assuntos
Sinorhizobium , Sphingomonas/crescimento & desenvolvimento , Orchidaceae , Inoculantes Agrícolas , Fungos , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA