Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 92: 101033, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739986

RESUMO

Calcium (Ca2+) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca2+ signals play an essential role in determining their specificity. Ca2+ signaling patterns can differ in various cell regions, and Ca2+ signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca2+ signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca2+ signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.


Assuntos
Sinalização do Cálcio , Núcleo Celular , Receptores Proteína Tirosina Quinases , Humanos , Núcleo Celular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Animais , Cálcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
2.
Plant Sci ; 340: 111971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160760

RESUMO

Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/microbiologia , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Fosfatidilinositóis , Proliferação de Células , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo
3.
Anim Reprod ; 20(3): e20220127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026001

RESUMO

Up to now, the definitive conclusion of the positive effects of rapid transient thawing at higher temperatures for shorter durations has not been obtained yet and is still under discussion due to some contradictory findings and limited assessment of post-thawed parameters. The purpose of the current study was to evaluate the effectiveness of rapid thawing in water at 70 °C by using various post-thawed parameters of frozen bull spermatozoa. Experiment 1, monitoring the change of temperature inside frozen bull straw thawed in water at different temperatures. Experiment 2, evaluation of various post-thawed characteristics of frozen bull spermatozoa thawed in water at different temperatures by using a computer-assisted sperm analysis, flow cytometry and immunocytochemistry. The time it took for the temperature inside the straw to warm up to 15 °C was nearly twice as faster when the straw was thawed in 70 °C water compared with 39 °C. Although there were differences among bulls, viability, motility, and mitochondrial membrane potential of spermatozoa thawed at 70 °C for 8 seconds and stabilized at 39 °C for 52 seconds were significantly higher than those of controls (thawed at 39 °C for 60 seconds) at 0 and 3 h after thawing. Just after thawing, however, there were no differences in acrosome integrity and distribution of phospholipase C zeta1, whereas mitochondrial reactive oxygen species production was significantly lower in spermatozoa thawed at 70 °C. From these results, we conclude that rapid thawing at 70 °C and then stabilization at 39 °C significantly improves viability, motility and mitochondrial health of bull spermatozoa rather than conventional thawing at 39 °C. The beneficial effect of rapid transient thawing could be due to shorter exposure to temperatures outside the physiological range, consequently maintaining mitochondrial health.

4.
Planta ; 257(6): 117, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173533

RESUMO

MAIN CONCLUSION: CRISPR/Cas9-mediated Phospholipase C2 knock-out tomato plants are more resistant to Botrytis cinerea than wild-type plants, with less ROS and an increase and reduction of (JA) and (SA)-response marker genes, respectively. Genome-editing technologies allow non-transgenic site-specific mutagenesis of crops, offering a viable alternative to traditional breeding methods. In this study we used CRISPR/Cas9 to inactivate the tomato Phospholipase C2 gene (SlPLC2). Plant PLC activation is one of the earliest responses triggered by different pathogens regulating plant responses that, depending on the plant-pathogen interaction, result in plant resistance or susceptibility. The tomato (Solanum lycopersicum) PLC gene family has six members, named from SlPLC1 to SlPLC6. We previously showed that SlPLC2 transcript levels increased upon xylanase infiltration (fungal elicitor) and that SlPLC2 participates in plant susceptibility to Botrytis cinerea. An efficient strategy to control diseases caused by pathogens is to disable susceptibility genes that facilitate infection. We obtained tomato SlPLC2-knock-out lines with decreased ROS production upon B. cinerea challenge. Since this fungus requires ROS-induced cell death to proliferate, SlPLC2-knock-out plants showed an enhanced resistance with smaller necrotic areas and reduced pathogen proliferation. Thus, we obtained SlPLC2 loss-of-function tomato lines more resistant to B. cinerea by means of CRISPR/Cas9 genome editing technology.


Assuntos
Solanum lycopersicum , Fosfolipases Tipo C , Fosfolipases Tipo C/metabolismo , Solanum lycopersicum/genética , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxilipinas/metabolismo , Melhoramento Vegetal , Botrytis/metabolismo , Fosfolipases/genética , Fosfolipases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
5.
J Agric Food Chem ; 71(13): 5275-5282, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961295

RESUMO

The increasing demand pressures the vegetable oil industry to develop novel refining methods. Degumming with type C phospholipases (PLCs) is a green technology and provides extra oil. However, natural PLCs are not active under the harsh conditions used in oil refining plants, requiring additional unit operations. These upfront capital expenditures and the associated operational costs hinder the adoption of this method. Here, we present a process based on ChPLC, a synthetic PLC obtained by consensus sequence design, possessing superior thermal stability and catalytic properties. Using ChPLC, crude soybean oil degumming was completed at 80 °C in 30 min, the temperature and residence time imposed by the design of existing oil refining plants. Remarkably, an extra yield of oil of 2% was obtained using 60% of the dose recommended for PLCs marketed today, saving upfront investments and reducing the operational cost of degumming. A techno-economic analysis indicates that, for medium size plants, ChPLC reduces the overall cost of soybean oil enzymatic degumming by 58%. The process presented here facilitates the implementation of enzymatic technologies to oil producers, regardless of their processing capacity, bringing potential annual benefits in the billion-dollar range for the global economy.


Assuntos
Óleos de Plantas , Óleo de Soja , Fosfolipases Tipo C , Temperatura
6.
Appl Microbiol Biotechnol ; 106(13-16): 5081-5091, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35854045

RESUMO

The implementation of cleaner technologies that minimize environmental pollution caused by conventional industrial processes is an increasing global trend. Hence, traditionally used chemicals have been replaced by novel enzymatic alternatives in a wide variety of industrial-scale processes. Enzymatic oil degumming, the first step of the oil refining process, exploits the conversion catalyzed by phospholipases to remove vegetable crude oils' phospholipids. This enzymatic method reduces the gums' volume and increases the overall oil yield. A thermostable phospholipase would be highly advantageous for industrial oil degumming as oil treatment at higher temperatures would save energy and increase the recovery of oil by facilitating the mixing and gums removal. A thermostable phosphatidylcholine (PC) (and phosphatidylethanolamine (PE))-specific phospholipase C from Thermococcus kodakarensis (TkPLC) was studied and completely removed PC and PE from crude soybean oil at 80 °C. Due to these characteristics, TkPLC is an interesting promising candidate for industrial-scale enzymatic oil degumming at high temperatures. KEY POINTS: • A thermostable phospholipase C from T. kodakarensis (TkPLC) has been identified. • TkPLC was recombinantly produced in Pichia pastoris and successfully purified. • TkPLC completely hydrolyzed PC and PE in soybean oil degumming assays at 80 °C.


Assuntos
Óleo de Soja , Fosfolipases Tipo C , Lecitinas , Fosfolipases , Fosfolipídeos , Óleo de Soja/química , Fosfolipases Tipo C/genética
7.
Front Cell Neurosci ; 16: 838939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242014

RESUMO

Although lithium has long been one of the most widely used pharmacological agents in psychiatry, its mechanisms of action at the cellular and molecular levels remain poorly understood. One of the targets of Li+ is the phosphoinositide pathway, but whereas the impact of Li+ on inositol lipid metabolism is well documented, information on physiological effects at the cellular level is lacking. We examined in two mammalian cell lines the effect of acute Li+ exposure on the mobilization of internal Ca2+ and phospholipase C (PLC)-dependent membrane conductances. We first corroborated by Western blots and immunofluorescence in HEK293 cells the presence of key signaling elements of a muscarinic PLC pathway (M1AchR, Gq, PLC-ß1, and IP3Rs). Stimulation with carbachol evoked a dose-dependent mobilization of Ca, as determined with fluorescent indicators. This was due to release from internal stores and proved susceptible to the PLC antagonist U73122. Li+ exposure reproducibly potentiated the Ca response in a concentration-dependent manner extending to the low millimolar range. To broaden those observations to a neuronal context and probe potential Li modulation of electrical signaling, we next examined the cell line SHsy5y. We replicated the potentiating effects of Li on the mobilization of internal Ca, and, after characterizing the basic properties of the electrical response to cholinergic stimulation, we also demonstrated an equally robust upregulation of muscarinic membrane currents. Finally, by directly stimulating the signaling pathway at different links downstream of the receptor, the site of action of the observed Li effects could be narrowed down to the G protein and its interaction with PLC-ß. These observations document a modulation of Gq/PLC/IP3-mediated signaling by acute exposure to lithium, reflected in distinct physiological changes in cellular responses.

8.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800808

RESUMO

Plants are subject to different types of stress, which consequently affect their growth and development. They have developed mechanisms for recognizing and processing an extracellular signal. Second messengers are transient molecules that modulate the physiological responses in plant cells under stress conditions. In this sense, it has been shown in various plant models that membrane lipids are substrates for the generation of second lipid messengers such as phosphoinositide, phosphatidic acid, sphingolipids, and lysophospholipids. In recent years, research on lipid second messengers has been moving toward using genetic and molecular approaches to reveal the molecular setting in which these molecules act in response to osmotic stress. In this sense, these studies have established that second messengers can transiently recruit target proteins to the membrane and, therefore, affect protein conformation, activity, and gene expression. This review summarizes recent advances in responses related to the link between lipid second messengers and osmotic stress in plant cells.


Assuntos
Lipídeos/fisiologia , Pressão Osmótica/fisiologia , Plantas/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Cálcio/metabolismo , Glicolipídeos/fisiologia , Modelos Biológicos , Fosfolipídeos/fisiologia , Proteínas de Plantas/metabolismo , Estresse Salino/fisiologia
9.
Biochim Biophys Acta Biomembr ; 1862(10): 183407, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628918

RESUMO

Miltefosine (hexadecylphosphocholine or HePC) is an alkylphosphocholine approved for the treatment of visceral and cutaneous Leishmaniasis. HePC exerts its effect by interacting with lipid membranes and affecting membrane-dependent processes. The molecular geometry of HePC suggests that the pharmacological function of HePC is to alter membrane curvature. As a model system, we studied the enzyme production in model membranes of diacylglycerol (DAG) or ceramide (CER), lipids involved in cell signaling which alter the structure of membranes. Here, we studied the effect of HePC on changes in phospholipase activity and on the effect that the lipid products have on the curvature and fusogenicity of membranes where they accumulate. Our results indicate that HePC inhibits the long-time restructuring of membranes, characteristic of the DAG and CER enzyme formation processes. In addition, the drug also reduces the fusogenicity of phospholipase-derived products. We postulate that the effect of HePC is due to a non-specific geometric compensation of HePC to the inverted cone-shape of DAG and CER products, acting as a relaxation agent of membrane curvature stress. These data are important for understanding the mechanism of action by which HePC regulates the lipid metabolism and signal transduction pathways in which these enzymes are involved.


Assuntos
Fosforilcolina/análogos & derivados , Fosfolipases Tipo C/metabolismo , Membrana Celular/efeitos dos fármacos , Metabolismo dos Lipídeos , Fosforilcolina/farmacologia , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo
10.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722468

RESUMO

Salicylic acid (SA) is an important signaling molecule involved in plant defense. While many proteins play essential roles in SA signaling, increasing evidence shows that responses to SA appear to involve and require lipid signals. The phospholipid-generated signal transduction involves a family of enzymes that catalyze the hydrolysis or phosphorylation of phospholipids in membranes to generate signaling molecules, which are important in the plant cellular response. In this review, we focus first, the role of SA as a mitigator in biotic/abiotic stress. Later, we describe the experimental evidence supporting the phospholipid-SA connection in plant cells, emphasizing the roles of the secondary lipid messengers (phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA)) and related enzymes (phospholipase D (PLD) and phospholipase C (PLC)). By placing these recent finding in context of phospholipids and SA in plant cells, we highlight the role of phospholipids as modulators in the early steps of SA triggered transduction in plant cells.


Assuntos
Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Células Vegetais/metabolismo , Ácido Salicílico/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fosfolipase D/metabolismo , Proteínas de Plantas/metabolismo
11.
Pathogens ; 8(4)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597256

RESUMO

In order to survive as extracellular parasites in the mammalian host environment, Trypanosoma brucei has developed efficient mechanisms of immune system evasion, which include the abundant expression of a variable surface glycoprotein (VSG) coat. VSGs are anchored in the parasite membrane by covalent C-terminal binding to glycosylphosphatidylinositol and may be periodically removed by a phospholipase C (PLC) and a major surface protein (TbMSP). VSG molecules show extraordinary antigenic diversity and a comparative analysis of protein sequences suggests that conserved elements may be a suitable target against African trypanosomiasis. However, the cleavage mechanisms of these molecules remain unclear. Moreover, in protozoan infections, including those caused by Trypanosoma brucei, it is possible to observe an increased expression of the matrix metalloproteinases (MMPs). To address the cleavage mechanism of VSGs, the PROSPER server was used for the identification of VSG sequence cleavage sites. After data compilation, it was observed that 64 VSG consensus sequences showed a high conservation of hydrophobic residues, such as valine (V), methionine (M), leucine (L) and isoleucine (I) in the fifth position-the exact location of the cleavage site. In addition, the PROSPER server identified conserved cleavage site portions of VSG proteins recognized by three matrix metalloproteases (gelatinases: MMP-2, MMP-3 and MMP-9). However, further biological studies are needed in order to analyze and confirm this prediction.

12.
J Biol Chem ; 294(45): 16650-16662, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537645

RESUMO

Calcium (Ca2+) signaling within the cell nucleus regulates specific cellular events such as gene transcription and cell proliferation. Nuclear and cytosolic Ca2+ levels can be independently regulated, and nuclear translocation of receptor tyrosine kinases (RTKs) is one way to locally activate signaling cascades within the nucleus. Nuclear RTKs, including the epidermal growth factor receptor (EGFR), are important for processes such as transcriptional regulation, DNA-damage repair, and cancer therapy resistance. RTKs can hydrolyze phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) within the nucleus, leading to Ca2+ release from the nucleoplasmic reticulum by inositol 1,4,5-trisphosphate receptors. PI(4,5)P2 hydrolysis is mediated by phospholipase C (PLC). However, it is unknown which nuclear PLC isoform is triggered by EGFR. Here, using subcellular fractionation, immunoblotting and fluorescence, siRNA-based gene knockdowns, and FRET-based biosensor reporter assays, we investigated the role of PLCδ4 in epidermal growth factor (EGF)-induced nuclear Ca2+ signaling and downstream events. We found that EGF-induced Ca2+ signals are inhibited when translocation of EGFR is impaired. Nuclear Ca2+ signals also were reduced by selectively buffering inositol 1,4,5-trisphosphate (InsP3) within the nucleus. EGF induced hydrolysis of nuclear PI(4,5)P2 by the intranuclear PLCδ4, rather than by PLCγ1. Moreover, protein kinase C, a downstream target of EGF, was active in the nucleus of stimulated cells. Furthermore, PLCδ4 and InsP3 modulated cell cycle progression by regulating the expression of cyclins A and B1. These results provide evidence that EGF-induced nuclear signaling is mediated by nuclear PLCδ4 and suggest new therapeutic targets to modulate the proliferative effects of this growth factor.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fosfolipase C delta/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Ciclina A/metabolismo , Ciclina B1/metabolismo , Receptores ErbB/metabolismo , Humanos , Hidrólise , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C delta/antagonistas & inibidores , Fosfolipase C delta/genética , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
13.
Exp Parasitol ; 204: 107731, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31374185

RESUMO

Neospora caninum is an obligate intracellular parasite related to cases of abortion and fertility impairment in cattle. The control of the parasite still lacks an effective protective strategy and the understanding of key mechanisms for host infection might be crucial for identification of specific targets. There are many proteins related to important mechanisms in the host cell infection cycle such as adhesion, invasion, proliferation and immune evasion. The surface proteins, especially SRS (Surface Antigen Glycoprotein - Related Sequences), have been demonstrated to have a pivotal role in the adhesion and invasion processes, making them potential anti-parasite targets. However, several predicted surface proteins were not described concerning their function and importance in the parasite life cycle. As such, a novel SRS protein, NcSRS57, was described. NcSRS57 antiserum was used to detect SRS proteins by immunofluorescence in parasites treated or not with phosphatidylinositol-specific phospholipase C (PI-PLC). The treatment with PI-PLC also allowed the identification of NcSRS29B and NcSRS29C, which were the most abundant SRS proteins in the soluble fraction. Our data indicated that SRS proteins in N. caninum shared a high level of sequence similarity and were susceptible to PI-PLC. In addition, the description of the SRS members, regarding abundance, function and immunogenicity will be useful in guiding specific methods to control the mechanism of adhesion and invasion mediated by these surface proteins.


Assuntos
Antígenos de Protozoários/metabolismo , Antígenos de Superfície/metabolismo , Neospora/química , Fosfoinositídeo Fosfolipase C/farmacologia , Proteínas de Protozoários/metabolismo , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Chlorocebus aethiops , Clonagem Molecular , DNA de Protozoário/isolamento & purificação , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Soros Imunes/imunologia , Soros Imunes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Neospora/efeitos dos fármacos , Neospora/genética , Neospora/imunologia , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Espectrometria de Massas em Tandem , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/farmacologia , Células Vero
14.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934540

RESUMO

The protozoan Trypanosoma brucei, responsible for animal and human trypanosomiasis, has a family of major surface proteases (MSPs) and phospholipase-C (PLC), both involved in some mechanisms of virulence during mammalian infections. During parasitism in the mammalian host, this protozoan is exclusively extracellular and presents a robust mechanism of antigenic variation that allows the persistence of infection. There has been incredible progress in our understanding of how variable surface glycoproteins (VSGs) are organised and expressed, and how expression is switched, particularly through recombination. The objective of this manuscript is to create a reflection about the mechanisms of antigenic variation in T. brucei, more specifically, in the process of variable surface glycoprotein (VSG) release. We firstly explore the mechanism of VSG release as a potential pathway and target for the development of anti-T. brucei drugs.


Assuntos
Descoberta de Drogas , Interações Hospedeiro-Parasita , Glicoproteínas de Membrana/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Animais , Humanos , Proteólise
15.
Neuroscience ; 396: 66-72, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458219

RESUMO

Drosophila phototransduction occurs in light-sensitive microvilli arranged in a longitudinal structure of the photoreceptor, termed the rhabdomere. Rhodopsin (Rh), isomerized by light, couples to G-protein, which activates phospholipase C (PLC), which in turn cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol (DAG), inositol trisphosphate and H+. This pathway opens the light-dependent channels, transient receptor potential (TRP) and transient receptor potential like (TRPL). PLC and TRP are held together in a protein assembly by the scaffold protein INAD. We report that the channels can be photoactivated in on-cell rhabdomeric patches and in excised patches by DAG. In excised patches, addition of PLC-activator, m-3M3FBS, or G-protein-activator, GTP-γ-S, opened TRP. These reagents were ineffective in PLC-mutant norpA and in the presence of PLC inhibitor U17322. However, DAG activated TRP even when PLC was pharmacologically or mutationally suppressed. These observations indicate that PLC, G-protein, and TRP were retained functional in these patches. DAG also activated TRP in the protein kinase C (PKC) mutant, inaC, excluding the possibility that PKC could mediate DAG-dependent TRP activation. Labeling diacylglycerol kinase (DGK) by fusion of fluorescent mCherry (mCherry-DGK) indicates that DGK, which returns DAG to dark levels, is highly expressed in the microvilli. In excised patches, TRP channels could be light-activated in the presence of GTP, which is required for G-protein activation. The evidence indicates that the proteins necessary for phototransduction are retained functionally after excision and that DAG is necessary and sufficient for TRP opening. This work opens up unique possibilities for studying, in sub-microscopic native membrane patches, the ubiquitous phosphoinositide signaling pathway and its regulatory mechanisms in unprecedented detail.


Assuntos
Ativação do Canal Iônico/efeitos da radiação , Luz , Microvilosidades/metabolismo , Microvilosidades/efeitos da radiação , Células Fotorreceptoras de Invertebrados/citologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/efeitos da radiação , Animais , Diacilglicerol Quinase/biossíntese , Diglicerídeos/farmacologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/efeitos da radiação , Drosophila melanogaster , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Proteína Quinase C/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia , Canais de Potencial de Receptor Transitório/isolamento & purificação , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética
16.
Nutr Res Rev ; 31(2): 267-280, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29983125

RESUMO

Micronutrients are indispensable for adequate metabolism, such as biochemical function and cell production. The production of blood cells is named haematopoiesis and this process is highly consuming due to the rapid turnover of the haematopoietic system and consequent demand for nutrients. It is well established that micronutrients are relevant to blood cell production, although some of the mechanisms of how micronutrients modulate haematopoiesis remain unknown. The aim of the present review is to summarise the effect of Fe, Mn, Ca, Mg, Na, K, Co, iodine, P, Se, Cu, Li and Zn on haematopoiesis. This review deals specifically with the physiological requirements of selected micronutrients to haematopoiesis, showing various studies related to the physiological requirements, deficiency or excess of these minerals on haematopoiesis. The literature selected includes studies in animal models and human subjects. In circumstances where these minerals have not been studied for a given condition, no information was used. All the selected minerals have an important role in haematopoiesis by influencing the quality and quantity of blood cell production. In addition, it is highly recommended that the established nutrition recommendations for these minerals be followed, because cases of excess or deficient mineral intake can affect the haematopoiesis process.


Assuntos
Células Sanguíneas/metabolismo , Hematopoese/efeitos dos fármacos , Minerais/farmacologia , Necessidades Nutricionais , Oligoelementos/farmacologia , Animais , Deficiências Nutricionais/complicações , Humanos , Estado Nutricional
17.
Appl Microbiol Biotechnol ; 102(16): 6997-7005, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29909572

RESUMO

ßγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of this superfamily is constituted by microbial members. This superfamily has also been recognized as a novel group of Ca2+-binding proteins with a large diversity and variable properties in Ca2+ binding and stability. We have recently described a new phosphatidylinositol phospholipase C from Lysinibacillus sphaericus (LS-PIPLC) which was shown to efficiently remove phosphatidylinositol from crude vegetable oil. Here, the role of the C-terminal ßγ-crystallin domain of LS-PIPLC was analyzed in the context of the whole protein. A truncated protein in which the C-terminal ßγ-crystallin domain was deleted (LS-PIPLCΔCRY) is catalytically as efficient as the full-length protein (LS-PIPLC). However, the thermal and chemical stability of LS-PIPLCΔCRY are highly affected, demonstrating a stabilizing role for this domain. It is also shown that the presence of Ca2+ increases the thermal and chemical stability of the protein both in aqueous media and in oil, making LS-PIPLC an excellent candidate for use in industrial soybean oil degumming.


Assuntos
Bacillaceae/enzimologia , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/genética , beta-Cristalinas/química , gama-Cristalinas/química , Sítios de Ligação , Cálcio/metabolismo , Escherichia coli/genética , Mutação , Fosfoinositídeo Fosfolipase C/biossíntese , Estabilidade Proteica , Estrutura Terciária de Proteína
18.
J Tradit Complement Med ; 8(1): 66-71, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29321991

RESUMO

Platelets play a key role in thrombosis and cardiovascular diseases. Medicinal plants could be one of the most important factors that influence risks for platelet activation. Buddleja globosa (known as "matico") is a medicinal plant with many biological activities. The high content of polyphenols suggest that matico could have antiplatelet activity. The present study was aimed at evaluating mechanisms of antiplatelet action of an extract of matico. We demonstrated that matico extract at low concentrations and in a concentration dependent manner (0.05-1 mg/mL) was a potent inhibitor of platelet aggregation in response to collagen, convulsion and ADP (IC50 values was 61 µg/mL, 72 µg/mL and 290 µg/mL, respectively). In this sense matico extract exerted the greatest antiaggregant activity induced by collagen. Similarly, matico showed a decrease in % of positive platelet for P-selectina (vehicle, 0.01, 0.05, 0.1, 0.5 and 1 mg/mL were 32 ± 2%, 29 ± 2 (p < 0.05), 19 ± 1 (p < 0.01), 15 ± 2 (p < 0.01), 10 ± 1% (p < 0.01) and 7 ± 2% (p < 0.01), respectively) and PAC-1 binding (vehicle, 0.01, 0.05, 0.1, 0.5 and 1 mg/mL were 59 ± 1, 58 ± 3 (n.s), 55 ± 2 (p < 0.05), 50 ± 2 (p < 0.01), 38 ± 1 (p < 0.01), 36 ± 2 (p < 0.01). The cellular mechanism for the antiplatelet activity of matico might be mediated by the inhibition of phospholipase C-gamma 2 and protein kinase C phosphorylation. This beneficial property of matico may be of importance in thrombosis, in which platelet activation and aggregation are important determinants of thrombus initiation and development, and may contribute to the beneficial effects of matico intake in the prevention of cardiovascular diseases.

19.
Appl Microbiol Biotechnol ; 101(11): 4471-4479, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28238084

RESUMO

Enzymatic degumming using phospholipase C (PLC) enzymes may be used in environmentally friendly processes with improved oil recovery yields. In this work, phosphatidylinositol-specific phospholipase C (PIPLC) candidates obtained from an in silico analysis were evaluated for oil degumming. A PIPLC from Lysinibacillus sphaericus was shown to efficiently remove phosphatidylinositol from crude oil, and when combined with a second phosphatidylcholine and phosphatidylethanolamine-specific phospholipase C, the three major phospholipids were completely hydrolyzed, providing an extra yield of oil greater than 2.1%, compared to standard methods. A remarkably efficient fed-batch Escherichia coli fermentation process producing ∼14 g/L of the recombinant PIPLC enzyme was developed, which may facilitate the adoption of this cost-effective oil-refining process.


Assuntos
Bacillaceae/enzimologia , Petróleo/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Bacillaceae/metabolismo , Técnicas de Cultura Celular por Lotes , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Hidrólise , Cinética , Fosfoinositídeo Fosfolipase C/genética , Fosfolipídeos/metabolismo , Óleos de Plantas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Planta ; 245(4): 717-728, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27999988

RESUMO

MAIN CONCLUSION: AtPLC2 is an essential gene in Arabidopsis, since it is required for female gametogenesis and embryo development. AtPLC2 might play a role in cell division during embryo-sac development and early embryogenesis. Phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in signal transduction during plant development and in the response to various biotic- and abiotic stresses. The Arabidopsis PI-PLC gene family is composed of nine members, named PLC1 to PLC9. Here, we report that PLC2 is involved in female gametophyte development and early embryogenesis. Using two Arabidopsis allelic T-DNA insertion lines with different phenotypic penetrations, we observed both female gametophytic defects and aberrant embryos. For the plc2-1 mutant (Ws background), no homozygous plants could be recovered in the offspring from self-pollinated plants. Nonetheless, plc2-1 hemizygous mutants are affected in female gametogenesis, showing embryo sacs arrested at early developmental stages. Allelic hemizygous plc2-2 mutant plants (Col-0 background) present reduced seed set and embryos arrested at the pre-globular stage with abnormal patterns of cell division. A low proportion (0.8%) of plc2-2 homozygous mutants was found to escape lethality and showed morphological defects and disrupted megagametogenesis. PLC2-promoter activity was observed during early megagametogenesis, and after fertilization in the embryo proper. Immunolocalization studies in early stage embryos revealed that PLC2 is restricted to the plasma membrane. Altogether, these results establish a role for PLC2 in both reproductive- and embryo development, presumably by controlling mitosis and/or the formation of cell-division planes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Gametogênese Vegetal/fisiologia , Sementes/crescimento & desenvolvimento , Fosfolipases Tipo C/fisiologia , Arabidopsis/enzimologia , Arabidopsis/ultraestrutura , Western Blotting , Glucuronidase/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Óvulo Vegetal/enzimologia , Óvulo Vegetal/fisiologia , Óvulo Vegetal/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA