Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799067

RESUMO

Inland waters are crucial in the carbon cycle, contributing significantly to the global CO2 fluxes. Carbonate lakes may act as both sources and sinks of CO2 depending on the interactions between the amount of dissolved inorganic carbon (DIC) inputs, lake metabolisms, and geochemical processes. It is often difficult to distinguish the dominant mechanisms driving CO2 dynamics and their effects on CO2 emissions. This study was undertaken in three groundwater-fed carbonate-rich lakes in central Spain (Ruidera Lakes), severely polluted with nitrates from agricultural overfertilization. Diel and seasonal (summer and winter) changes in CO2 concentration (CCO2) DIC, and CO2 emissions-(FCO2)-, as well as physical and chemical variables, including primary production and phytoplanktonic chlorophyll-a were measured. In addition, δ13C-DIC, δ13C-CO2 in lake waters, and δ13C of the sedimentary organic matter were measured seasonally to identify the primary CO2 sources and processes. While the lakes were consistently CCO2 supersaturated and FCO2 was released to the atmosphere during both seasons, the highest CCO2 and DIC were in summer (0.36-2.26 µmol L-1). Our results support a strong phosphorus limitation for primary production in these lakes, which impinges on CO2 dynamics. External DIC inputs to the lake waters primarily drive the CCO2 and, therefore, the FCO2. The δ13C-DIC signatures below -12‰  confirmed the primary geogenic influence on DIC. As also suggested by the high values on the calcite saturation index, the Miller-Tans plot revealed that the CO2 source in the lakes was close to the signature provided by the fractionation of δ13C-CO2 from calcite precipitation. Therefore, the main contribution behind the CCO2 values found in these karst lakes should be attributed to the calcite precipitation process, which is temperature-dependent according to the seasonal change observed in δ13C-DIC values. Finally, co-precipitation of phosphate with calcite could partly explain the observed low phytoplankton production in these lakes and the impact on the contribution to increasing greenhouse gas emissions. However, as eutrophication increases and the soluble reactive phosphorus (SRP) content increases, the co-precipitation of phosphate is expected to be progressively inhibited. These thresholds must be assessed to understand how the CO32- ions drive lake co-precipitation dynamics. Carbonate regions extend over 15% of the Earth's surface but seem essential in the CO2 dynamics at a global scale.


Assuntos
Dióxido de Carbono , Lagos , Estações do Ano , Lagos/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Espanha , Monitoramento Ambiental/métodos , Ciclo do Carbono , Fitoplâncton/metabolismo
2.
Ecology ; 102(11): e03499, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314034

RESUMO

Plant-soil feedback (PSF) occurs when plants change the biota and physicochemical properties of the soil, and these changes affect future survival or growth of plants. PSF depends on several factors such as plant functional attributes (e.g., life cycle or photosynthetic metabolism) and the environment. PSF often turn positive under dry conditions because soil biota confers drought tolerance. Conspecifics and close relatives share pathogens and consume similar resources, exerting negative PSF on each other. These ideas have mostly been tested under controlled conditions, while field studies remain scarce. To reevaluate these findings in nature, we analyzed plant-soil feedbacks over a drought-stress gradient in a phosphorus-limited semiarid grassland. We planted seedlings of 17 species in plots where community composition had been monitored for six years. To determine PSF intensity, we measured how seedling longevity was affected by previous occupancy of conspecifics and heterospecifics. The previous occupancy-survival relationship (OSR) was used as a proxy for PSF. Evidence for OSRs was found in one-third of the species pairs, with inconclusive evidence for the rest suggesting weak feedbacks. This is in line with the expectation that PSFs in the field are weaker than under controlled conditions. As expected, positive PSFs were more frequent as drought stress increased. The strongest OSRs were caused in dry plots by C4 perennial grasses, which had very positive OSRs on several C3 annual forbs, but negative effects on each other. Well-documented differences between these two functional groups may explain this result: C3 plants are more sensitive to drought, and thus may be favored by tolerance-conferring microbiota; in contrast, water-efficient C4 perennial grasses compete for phosphorus strongly, perhaps driving strong negative PSFs between them. Finally, close relatives had more negative OSRs on each other than on distant relatives as expected, although only in dry plots. This pattern was mostly due to the negative effects of closely related C4 grasses under dry conditions, and their positive effects on distantly related dicots. Our results highlight the importance of plant traits and of the environmental context in determining the direction and strength of PSFs under field conditions.


Assuntos
Secas , Solo , Retroalimentação , Pradaria , Plantas
3.
New Phytol ; 212(2): 400-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27282142

RESUMO

Soils influence tropical forest composition at regional scales. In Panama, data on tree communities and underlying soils indicate that species frequently show distributional associations to soil phosphorus. To understand how these associations arise, we combined a pot experiment to measure seedling responses of 15 pioneer species to phosphorus addition with an analysis of the phylogenetic structure of phosphorus associations of the entire tree community. Growth responses of pioneers to phosphorus addition revealed a clear tradeoff: species from high-phosphorus sites grew fastest in the phosphorus-addition treatment, while species from low-phosphorus sites grew fastest in the low-phosphorus treatment. Traits associated with growth performance remain unclear: biomass allocation, phosphatase activity and phosphorus-use efficiency did not correlate with phosphorus associations; however, phosphatase activity was most strongly down-regulated in response to phosphorus addition in species from high-phosphorus sites. Phylogenetic analysis indicated that pioneers occur more frequently in clades where phosphorus associations are overdispersed as compared with the overall tree community, suggesting that selection on phosphorus acquisition and use may be strongest for pioneer species with high phosphorus demand. Our results show that phosphorus-dependent growth rates provide an additional explanation for the regional distribution of tree species in Panama, and possibly elsewhere.


Assuntos
Fósforo/farmacologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Clima Tropical , Biomassa , Fosfoproteínas Fosfatases/metabolismo , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Especificidade da Espécie , Árvores/efeitos dos fármacos
4.
Front Microbiol ; 7: 58, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903955

RESUMO

Bacterial genomes undergo numerous events of gene losses and gains that generate genome variability among strains of the same species (microevolution). Our aim was to compare the genomes and relevant phenotypes of three Bacillus coahuilensis strains from two oligotrophic hydrological systems in the Cuatro Ciénegas Basin (México), to unveil the environmental challenges that this species cope with, and the microevolutionary differences in these genotypes. Since the strains were isolated from a low P environment, we placed emphasis on the search of different phosphorus acquisition strategies. The three B. coahuilensis strains exhibited similar numbers of coding DNA sequences, of which 82% (2,893) constituted the core genome, and 18% corresponded to accessory genes. Most of the genes in this last group were associated with mobile genetic elements (MGEs) or were annotated as hypothetical proteins. Ten percent of the pangenome consisted of strain-specific genes. Alignment of the three B. coahuilensis genomes indicated a high level of synteny and revealed the presence of several genomic islands. Unexpectedly, one of these islands contained genes that encode the 2-keto-3-deoxymannooctulosonic acid (Kdo) biosynthesis enzymes, a feature associated to cell walls of Gram-negative bacteria. Some microevolutionary changes were clearly associated with MGEs. Our analysis revealed inconsistencies between phenotype and genotype, which we suggest result from the impossibility to map regulatory features to genome analysis. Experimental results revealed variability in the types and numbers of auxotrophies between the strains that could not consistently be explained by in silico metabolic models. Several intraspecific differences in preferences for carbohydrate and phosphorus utilization were observed. Regarding phosphorus recycling, scavenging, and storage, variations were found between the three genomes. The three strains exhibited differences regarding alkaline phosphatase that revealed that in addition to gene gain and loss, regulation adjustment of gene expression also has contributed to the intraspecific diversity of B. coahuilensis.

5.
Front Microbiol ; 6: 1465, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733994

RESUMO

Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA