Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Environ Geochem Health ; 46(8): 302, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990227

RESUMO

In this study, a highly efficient CoFe2O4-anchored g-C3N4 nanocomposite with Z-scheme photocatalyst was developed by facile calcination and hydrothermal technique. To evaluate the crystalline structure, sample surface morphology, elemental compositions, and charge conductivity of the as-synthesized catalysts by various characterization techniques. The high interfacial contact of CoFe2O4 nanoparticles (NPs) with g-C3N4 nanosheets reduced the optical bandgap from 2.67 to 2.5 eV, which improved the charge carrier separation and transfer. The photo-degradation of methylene blue (MB) and rhodamine B (Rh B) aqueous pollutant suspension under visible-light influence was used to investigate the photocatalytic degradation activity of the efficient CoFe2O4/g-C3N4 composite catalyst. The heterostructured spinel CoFe2O4 anchored g-C3N4 photocatalysts (PCs) with Z-scheme show better photocatalytic degradation performance for both organic dyes. Meanwhile, the efficiency of aqueous MB and Rh B degradation in 120 and 100 min under visible-light could be up to 91.1% and 73.7%, which is greater than pristine g-C3N4 and CoFe2O4 catalysts. The recycling stability test showed no significant changes in the photo-degradation activity after four repeated cycles. Thus, this work provides an efficient tactic for the construction of highly efficient magnetic PCs for the removal of hazardous pollutants in the aquatic environment.


Assuntos
Cobalto , Compostos Férricos , Azul de Metileno , Nanocompostos , Rodaminas , Poluentes Químicos da Água , Cobalto/química , Compostos Férricos/química , Catálise , Nanocompostos/química , Rodaminas/química , Poluentes Químicos da Água/química , Azul de Metileno/química , Fotólise , Luz , Compostos Inorgânicos de Carbono/química , Nitrilas/química , Processos Fotoquímicos , Compostos de Nitrogênio/química , Grafite
2.
BMC Chem ; 18(1): 123, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951843

RESUMO

Titanium dioxide (TiO2) nanoparticles were prepared through Rosmarinus-officinalis leaf extracts at 90 and 200°C. In this research, the degradations of methylene blues by using TiO2 nanoparticles Sun light radiations were studied. The synthesized materials were characterized using XRDs, UV-Vis, PL, SEM, TEM, EDS and XPS. The results displayed that bio-synthesis temperatures intrude the shapes and sizes of TiO2 nanoparticles. For TiO2-90, micrographs show separable crystalline with irregular morphologies and agglomerate cubic particles. For the other TiO2-200 sample, SEM and TEM micro-imaging shows crumbly agglomerated cubic structures. The XRD shows that the intense peaks observed at angles of 25.37°, 37.19°, 47.81° and 53.89° confirming a highly crystalline oriented as (004), (200), and (105) planes respectively. The optical properties of TiO2 nanoparticles synthesized were conveyed by PL and UV-Vis. The energy band gap calculated was 3.0 eV for both samples; that indicates heating temperature didn't influence the band gap of the samples. The elemental composition Ti and O2 is shown by EDS and XPS. Photo-catalytic experiments discovered that TiO2-90 nanoparticles were well-organized in photo-degradations of MB, likened to TiO2-200. The great activities of TiO2-90 were because of better physicochemical characteristics associated with TiO2-200 effectively degrading MB under photo-light. Photo-degradations of dye under sunlight as plentifully obtainable energy sources by TiO2, synthesized by simpler techniques, can be hopeful to grow an eco-friendly and economical process.

3.
Int J Biol Macromol ; 274(Pt 1): 133310, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909737

RESUMO

In the acoustics of musical instruments with a resonator body, the aging of the wood leads to the improvement of the acoustic properties due to increasing the crystallinity of wood. This phenomenon could be explained by the fact that wood is a complex product based on three-dimensional polymer chains of carbohydrates, its aging being closely related to covalent cross-linking and scission of polymer chains. The aim of this study was to evaluate at a multiscale the changes produced artificial aging of tone wood by measuring the acoustic, mechanical and chemical parameters. The spruce and maple wood samples were investigated before and after exposure to ultraviolet (UV) radiation, through the tensile test, the time-of-flight method (TOF), the analysis of the wood color and the determination of the chemical fingerprint through Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The obtained results showed that the effects of artificial aging are manifested at the chemical level where the crystallinity increases up to the acoustic level, depending on the wood species and their quality class. These results are relevant for musical instrument manufacturers to find treatments that lead to superior acoustic properties.

4.
Sci Rep ; 14(1): 13070, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844551

RESUMO

Air contaminants lead to various environmental and health issues. Titanium dioxide (TiO2) features the benefits of autogenous photocatalytic degradation of air contaminants. To evaluate its performance, laboratory experiments are commonly used to determine the kinetics of the photocatalytic-degradation rate, which is labor intensive, time-consuming, and costly. In this study, Machine Learning (ML) models were developed to predict the photo-degradation rate constants of air-borne organic contaminants with TiO2 nanoparticles and ultraviolet irradiation. The hyperparameters of the ML models were optimized, which included Artificial Neural Network (ANN) with Bayesian optimization, gradient booster regressor (GBR) with Bayesian optimization, Extreme Gradient Boosting (XGBoost) with optimization using Hyperopt, and Catboost combined with Adaboost. The organic contaminant was encoded through Molecular fingerprints (MF). Imputation method was applied to deal with the missing data. A generative ML model Vanilla Gan was utilized to create synthetic data to further augment the size of available dataset and the SHapley Additive exPlanations (SHAP) was employed for ML model interpretability. The results indicated that data imputation allowed for the full utilization of the limited dataset, leading to good machine learning prediction performance and preventing common overfitting problems with small-sized data. Additionally, augmenting experimental data with synthetic data significantly improved prediction accuracy and considerably reduced overfitting issues. The results ranked the feature importance and assessed the impacts of different experimental variables on the rate of photo-degradation, which were consistent with physico-chemical laws.

5.
Food Chem ; 452: 139504, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744135

RESUMO

Cu(II)-organic acid (fraction I) and Cu(I)-thiol (fraction II) complexes can suppress sulfhydryl off-aromas in wine. This study investigated the impact of light exposure on the protective fractions of Cu of bottled white wine. Fluorescent light-exposed Chardonnay with two initial concentrations of dissolved oxygen (0.5 and 10 mg/L) was stored in different coloured bottles and concentrations of Cu fractions and riboflavin, a photo-initiator at 370-440 nm, were measured during 110 days storage. Light-exposed wines with lower oxygen concentrations resulted in a 100-fold decrease in the Cu fraction I half-life, and a 60-fold decrease for Cu fractions I and II combined. The half-life for Cu fraction I decay during light exposure was extended 30-fold with the use of brown compared to flint glass. Light exposure can rapidly exhaust the protective Cu fractions in wine, and bottles with less light transmission below 440 nm can slow this loss.


Assuntos
Cor , Cobre , Luz , Oxigênio , Vinho , Vinho/análise , Oxigênio/química , Oxigênio/análise , Cobre/química , Cobre/análise , Embalagem de Alimentos/instrumentação , Armazenamento de Alimentos
6.
Sci Rep ; 14(1): 8029, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580774

RESUMO

Environmental accidents highlight the need for the development of efficient materials that can be employed to eliminate pollutants including crude oil and its derivatives, as well as toxic organic solvents. In recent years, a wide variety of advanced materials has been investigated to assist in the purification process of environmentally compromised regions, with the principal contestants being graphene-based structures. This study describes the synthesis of graphene aerogels with two methods and determines their efficiency as adsorbents of several water pollutants. The main difference between the two synthesis routes is the use of freeze-drying in the first case, and ambient pressure drying in the latter. Raman spectroscopy, Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and contact angle measurements are employed here for the characterisation of the samples. The as-prepared aerogels have been found to act as photocatalysts of aqueous dye solutions like methylene blue and Orange G, while they were also evaluated as adsorbents of organic solvents (acetone, ethanol and methanol), and, oils like pump oil, castor oil, silicone oil, as well. The results presented here show that the freeze-drying approach provides materials with better adsorption efficiency for the most of the examined pollutants, however, the energy and cost-saving advantages of ambient-pressure-drying could offset the adsorption advantages of the former case.

7.
Polymers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276709

RESUMO

The development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to form stable complexes with amino acids and to generate reactive oxygen species when irradiated by light of appropriate wavelengths. The issues of hydrophobic behavior and aggregation in aqueous environments of porphyrins can be solved by using its PEGylated derivatives. This work proposes the design of an artificial photo-protease agent based on a PEGylated mercury porphyrin, able to form a stable complex with l-Tryptophan, an amino acid present also in the lysozyme structure (a well-known protein model). The sensing and photodegradation features of PEGylated mercury porphyrin were exploited to detect and degrade both l-Trp and lysozyme using ROS, generated under green (532 nm) and red (650 nm) light lasers. The obtained system (Star3600_Hg) and its behavior as a photo-protease agent were studied by means of several spectroscopies (UV-Vis, fluorescence and circular dichroism), and MALDI-TOF mass spectrometry, showing the cleavage of lysozyme and the appearance of several short-chain residues. The approach of this study paves the way for potential applications in theranostics and targeted bio-medical therapies.

8.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257298

RESUMO

Most tablets put on the market are coated with polymers soluble in water. The Opadry II 85 series from Colorcon Inc., is a family of PVA-based products marketed since the 1990s. Despite numerous publications on the properties of PVA, to date, limited work has been undertaken to determine the physico-chemical parameters (i.e., UV light, high temperature, and relative humidity) that could affect the performance of PVA-based coatings. To this end, we performed artificial ageing processes on samples made of Opadry Orange II or of some selected components of this coating and analysed them by means of a multidisciplinary approach, using, for example, FTIR, NMR, rheology, and DMTA measurements. In this way, we analysed the influence of the critical components of the Opadry Orange II formula, such as titanium dioxide and aluminium hydroxide, on the coating characteristics under ageing conditions.

9.
Environ Pollut ; 341: 122982, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984478

RESUMO

Dissolved organic matter (DOM) is very important in determining the speciation, behaviors, and risk of metal pollutants in aquatic ecosystems. Photochemical and microbial degradation are key processes in the cycling of DOM, yet their effects on the DOM-Pb(II) interaction remain largely unknown. This was studied by examining the complexation of river DOM with Pb(II) after degradation, using fluorescence quenching titration and excitation-emission matrices-parallel factor analysis (EEMs-PARAFAC). Three humic-like and two protein-like components were identified, with strong removals of humic-like components and decreasing average molecular weight and humification degree of DOM by photo- and photo-microbial degradation. The changes in humic-like abundance and structure resulted in notable weakening of their interaction with Pb(II). The tryptophan-like C2 was also mainly removed by photo-degradation, while the tyrosine-like C3 could be either removed or accumulated. The Pb(II)-binding of protein-like components was generally weaker but was enhanced in some degradation groups, which might be related to the lowering competition from humic-like components. The binding parameters correlated significantly with the DOM indices, which were dominated by photo-degradation for humic-like components but by seasonal variations for the tyrosine-like component. These results have implications for understanding the key mechanisms underlying the variability of the DOM-metal interaction in aquatic environments.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Chumbo , Substâncias Húmicas/análise , Fluorescência , Tirosina , Espectrometria de Fluorescência/métodos , Análise Fatorial
10.
J Hazard Mater ; 465: 133361, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157811

RESUMO

The unique layered structure of bismuth halide oxide has led to an extensive application in the degradation of refractory antibiotics from water environments. With the aid of regulating the energy band structure of photocatalytic materials and equilibrating the response towards visible light and redox ability, a novel oxygen-vacancy-rich Bi5O7BrxI1-x nanorod solid solution was synthesized by polyvinylpyrrolidone K30 assisted solvothermal method, and its photocatalytic behavior was investigated for the degradation of antibiotic levofloxacin under visible light. The degradation rate of the optimal Bi5O7Br0.5I0.5 to levofloxacin can reach 82.7% within 30 min, which is 9.22 and 4.74 times higher than those of the monomers Bi5O7Br and Bi5O7I. The catalyst of Bi5O7Br0.5I0.5 shows 99.88% antibacterial activity against Escherichia coli. The efficient photocatalytic ability of the Bi5O7Br0.5I0.5 is resulted from the alteration of energy band structure and suppression of charge recombination due to benign changes in the electronic and crystal structures. Furthermore, both various characterizations and Density Functional Theory calculations reveal that a multitude of oxygen vacancies exist in the Bi5O7Br0.5I0.5. The photocatalytic degradation pathways were explored and the toxicity of the intermediates was also appraised. The present work provides a mild and feasible construction of solid solutions and introduction of oxygen vacancies to eliminate environmentally refractory organic pollutants with photocatalytic technology.

11.
Environ Sci Pollut Res Int ; 30(58): 121929-121947, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957496

RESUMO

Improvement in the photocatalytic selectivity is imperative for the effective and efficient utilization of catalysts. In this study, a molecularly imprinted polymer-coated iron-doped titanium dioxide (Fe-TiO2@MIP) nanocomposite was successfully synthesized by precipitation polymerization while using RB-19 as a template. The synthesized nanocomposites (Fe-TiO2@MIP and Fe-TiO2@NIP) were characterized by Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-EMMETT-Teller (BET), and UV-visible spectrophotometry. The optimized binding experiments revealed a high imprinting factor of 5.0 for RB-19. The catalytic degradation efficiency and selectivity of Fe-TiO2@MIP enhanced to almost complete degradation of RB-19 from 70% for the parent Fe-TiO2 and 76% for Fe-TiO2@NIP. An outstanding degradation selectivity of RB-19 was achieved compared to other competitive dyes. Finally, the analysis of the non-degraded and degraded RB-19 by ESI-MS revealed the presence of different intermediates that fits well with the proposed degradation mechanism. The study opens new possibilities of selective photo-degradation of targeted contaminants that may ultimately lead to efficient use of photocatalysts.


Assuntos
Luz , Impressão Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Titânio/química , Catálise
12.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894652

RESUMO

Limited light absorption and rapid photo-generated carriers' recombination pose significant challenges to the practical applications of photocatalysts. In this study, we employed an efficient approach by combining the slow-photon effect with Z-scheme charge transfer to enhance the photo-degradation performance of antibiotics. Specifically, we incorporated 0D ZnIn2S4 quantum dots (QDs) into a 3D hierarchical inverse opal (IO) TiO2 structure through a facile one-step process. This combination enhanced the visible light absorption and provided abundant active surfaces for efficient photo-degradation. Moreover, the ZnIn2S4 QDs formed an artificial Z-scheme system with IO-TiO2, facilitating the separation and migration of charge carriers. To achieve a better band alignment with IO-TiO2, we doped Ag into the ZnIn2S4 QDs (Ag: ZIS QDs) to adjust their energy levels. Through an investigation of the different Ag contents in the ZnIn2S4 QDs, we found that the optimal photo-degradation performance was achieved with Ag (2.0): ZIS QDs/IO-TiO2, exhibiting degradation rates 19.5 and 14.8 times higher than those of ZnIn2S4 QDs and IO-TiO2, respectively. This study provides significant insights for elevating the photocatalytic capabilities of IO-TiO2 and broadening its prospective applications.

13.
Environ Sci Pollut Res Int ; 30(42): 96360-96375, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572254

RESUMO

Water resources are seriously threatened by dye wastewater, and the removal of the dye molecules from the wastewater has garnered considerable interest. People have favored photocatalytic technology in recent years for the treatment of dye wastewater. In this work, attapulgite (ATP) was used as a carrier, Fe3O4 and g-C3N4 were grafted onto ATP, and the surface was then modified with polyethyleneimine (PEI) to produce photocatalyst ATP-Fe3O4-g-C3N4-PEI, which was used in Malachite green (MG) dye wastewater. The structure and surface properties of the composites were analyzed and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray spectrum (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Uv-vis spectrum analysis, zeta potential measurement, and vibrating-sample magnetometry (VSM) analysis. The removal performance of ATP-Fe3O4-gC3N4-PEI for MG was studied, and the removal mechanism was explored and revealed. It has been shown that the heterojunction formed by Fe3O4 and g-C3N4 can inhibit the compounding of photogenerated electrons and holes, effectively improving the performance of the ATP-Fe3O4-g-C3N4-PEI. Electron paramagnetic resonance (EPR) analysis confirmed that ATP-Fe3O4-g-C3N4-PEI could generate hydroxyl radicals (·OH) and superoxide radicals (·O2-) to degrade the MG. It was believed that ATP-Fe3O4-g-C3N4-PEI could generate hydroxyl radicals (·OH) through the photocatalysis and the Fenton reaction of the composite materials. Under the action of H+, ·O2-, and ·OH, the removal rate of MG by ATP-Fe3O4-g-C3N4-PEI exceeded 98 % at an optimal condition. The intermediate products and degradation pathways of MG degradation were also inferred by LC-MS analysis. These results showed that the prepared photocatalyst has excellent degradation performance for MG and could be used in dye wastewater treatment.


Assuntos
Fenômenos Magnéticos , Águas Residuárias , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Trifosfato de Adenosina , Luz , Catálise
14.
Biomolecules ; 13(7)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37509177

RESUMO

Oxidation represents a major pathway for the chemical degradation of pharmaceutical formulations. Few specific details are available on the mechanisms that trigger oxidation reactions in these formulations, specifically with respect to the formation of free radicals. Hence, these mechanisms must be formulated based on information on impurities and stress factors resulting from manufacturing, transportation and storage. In more detail, this article focusses on autoxidation, metal-catalyzed oxidation, photo-degradation and radicals generated from cavitation as a result of mechanical stress. Emphasis is placed on probable rather than theoretically possible pathways.


Assuntos
Peróxido de Hidrogênio , Metais , Composição de Medicamentos , Radicais Livres , Oxirredução , Fenômenos Químicos , Peróxido de Hidrogênio/metabolismo
15.
Insects ; 14(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367367

RESUMO

Since its discovery in North America in 2014, the spotted lanternfly (SLF), Lycorma delicatula, has become an economic, ecological, and nuisance pest there. Developing early detection and monitoring tools is critical to their mitigation and control. Previous research found evidence that SLF may use pheromones to help locate each other for aggregation or mating. Pheromone production necessitates specific conditions by the insects, and these must be investigated and described. A chemical process called photo-degradation has been described as a final step in the production of pheromones in several diurnal insect species, in which cuticular hydrocarbons were broken down by sunlight into volatile pheromone components. In this study, photo-degradation was investigated as a possible pheromone production pathway for SLF. Extracts from SLF mixed-sex third and fourth nymphs and male or female adults were either exposed to simulated sunlight to produce a photo-degradative reaction (photo-degraded), or not exposed to light (crude), while volatiles were collected. Behavioral bioassays tested for attraction to volatiles from photo-degraded and crude samples and their residues. In third instars, only the volatile samples from photo-degraded mixed-sex extracts were attractive. Fourth instar males were attracted to both crude and photo-degraded residues, and volatiles of photo-degraded mixed-sex extracts. Fourth instar females were attracted to volatiles of crude and photo-degraded mixed-sex extracts, but not to residues. In adults, only males were attracted to body volatiles from crude and photo-degraded extracts of either sex. Examination of all volatile samples using gas chromatography coupled with mass spectrometry (GC-MS) revealed that most of the identified compounds in photo-degraded extracts were also present in crude extracts. However, the abundance of these compounds in photo-degraded samples were 10 to 250 times more than their abundance in the crude counterparts. Results from behavioral bioassays indicate that photo-degradation probably does not generate a long-range pheromone, but it may be involved in the production of a short-range sex-recognition pheromone in SLF. This study provides additional evidence of pheromonal activity in SLF.

16.
Environ Pollut ; 334: 122059, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390913

RESUMO

A ternary hetero-junction was prepared by anchoring ZnO@CoFe2O4 (ZCF) on activated carbon (AC) and employed as a UV-assisted peroxymonosulfate (PMS) activator to boost the degradation of diazinon (DZN) pesticide. The structure, morphology, and optical properties of the ZCFAC hetero-junction were characterized through a series of techniques. The highest degradation efficiency of DZN (100% in 90 min) was achieved by the PMS-mediated ZCFAC/UV system, superior to other single or binary catalytic systems due to the strong synergistic effect between ZCFAC, PMS, and UV. The operating reaction conditions, synergistic effects, and the possible pathways of DZN degradation were investigated and discussed. Optical analysis showed that the band-gap energy of the ZCFAC hetero-junction not only enhanced the absorption of UV light but also reduced the recombination of photo-induced electron/hole pairs. Both radical and non-radical species (HO•, SO4•-, O2•-, 1O2, and h+) took part in the photo-degradation of DZN, assessed by scavenging tests. It was found that AC as a carrier not only improved the catalytic activity of CF and ZnO nanoparticles and conferred high stability for the catalyst but also played a crucial role in accelerating the catalytic PMS activation mechanism. Moreover, the PMS-mediated ZCFAC/UV system showed good reusability, universality, and practical applicability potential. Overall, this work explored an efficient strategy for the best use of hetero-structure photo-catalysts towards PMS activation to achieve high performance in decontaminating organic compounds.


Assuntos
Praguicidas , Óxido de Zinco , Carvão Vegetal , Compostos Orgânicos , Diazinon , Peróxidos/química
17.
J Hazard Mater ; 453: 131435, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086671

RESUMO

The photocatalytic efficiency of polymeric carbon nitride (PCN) suffers from unsatisfactory charge separation because of its amorphous structure. Herein, we report a simple bottom-up method to synthesize a novel structure of rubidium ion inserted PCN (Rb-PCN), which involves the regular alignment of melon chains to endow a crystalline feature in PCN. The insertion of Rb+ decreased not only the N p electrons in the heptazine ring but also the plane angle of the heptazine motifs in the melon chain, which promoted the long-range periodicity and crystallinity of carbon nitride. This structurally rearranged crystalline Rb-PCN demonstrated considerably enhanced separation of charge carriers, resulting in six-fold higher photocatalytic hydrogen evolution activity than its amorphous counterpart. Furthermore, the photoexcited electrons can be efficiently trapped by O2 to generate H2O2, which facilitates the production of reactive oxygen species to inactivate bacteria and degrade organic pollutants, showing great potential for use in both energy and environmental applications.

18.
Int J Biol Macromol ; 238: 124132, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36958439

RESUMO

As dye adsorbents with great potential, polysaccharide-based hydrogels are significantly hampered in practical application owing to intricate preparation methods, low absorption, and bad degradability. Salecan is a water-soluble extracellular polysaccharide with excellent physicochemical and biological properties. Here, salecan and xanthan gum were first used as a dual-precursors system, their mixed solution was crosslinked by Fe3+ to assemble a photo-degradable ionic gel for malachite green (MG) adsorption. Photo-degradation was done using visible light under very mild conditions, which gave rise to gel network dissolution and homogeneous solution formation. Extensive dynamic coordinate interactions between Fe3+ and polysaccharides maintained gel matrix stability and were systematically investigated. The control of water uptake, micro-structure, and rheology can be facilely implemented by tuning salecan/xanthan gum ratios. Furthermore, various parameters such as polysaccharide ratios, pHs, MG concentrations, and contact time affecting adsorption were optimized using batch experiments. Adsorption process accurately adhered to pseudo-second-order kinetic and Langmuir isotherm model, with the maximum adsorption capacity of 463.0 mg/g. Such mechanism implied monolayer chemisorptive characteristics. The gel exhibited satisfactory reusability and was recycled five times without apparent decrease in adsorption capacity. From these results, the photo-degradable Fe3+-induced salecan/xanthan gum ionic gel is an alternative and sustainable absorbent for MG removal.


Assuntos
Descontaminação , Ferro , Polissacarídeos Bacterianos/química , Corantes/química , Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética
19.
Environ Sci Pollut Res Int ; 30(16): 45677-45700, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826768

RESUMO

In today's era, "green" synthesis is an emerging research trend. It has gained widespread attention owing to its dynamic behavior, reliability, simplicity, sustainability, and environment friendly approach for fabricating various nanomaterials. Green fabrication of metal/metal oxides nanomaterials, hybrid materials, and other metal-based nanocomposite can be utilized to remove toxic colored aqueous pollutants. Nanomaterials synthesized by using green approach is considered to be the significant tool to minimize unwanted or harmful by-products otherwise released from traditional synthesis methods. Various kinds of biosynthesized nanomaterials, such as animal waste and plant-based, have been successfully applied and well documented in the literature. However, their application part, especially for the cure of colored organic polluted water, has not been reported as a single review article. Therefore, the current work aims to assemble reports on using novel biosynthesized green metal-based nanomaterials to exclude harmful dyes from polluted water.


Assuntos
Nanocompostos , Reprodutibilidade dos Testes , Óxidos , Água , Metais , Adsorção
20.
Environ Sci Pollut Res Int ; 30(6): 14630-14640, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36161559

RESUMO

In this study, simultaneous removal of an organic matter (diazinon, DIZ) and an inorganic substance (chromium, Cr) was used. Breaking down of organic matter by UV irradiation produces various radicals, including sulfides, carboxyl, hydroxyl, hydrated electrons, and various organic radicals that are highly reactive and help us to precipitation inorganic substance (Cr). The optimal condition was 30:1 DIZ:Cr molar ratio, pH 9, and about 100% and 82.3% of DIZ and Cr were obtained in 30 min. Cr deposition was very slow at first. After the destruction of the DIZ structure, Cr deposition began, and various types of sludge with disturbed properties were formed. These sledges were analyzed by FTIR analysis and showed that green sludge could be chromium (III) hydroxide; brown sludge due to chromium (III) hydroxide, tiny green crystals from chromium (III) oxide, red brick from chromium (II) acetate chromium trioxide, as well as black sludge caused by chromium oxide were identified. In UV/DIZ/Cr process, kobs and robs range obtained 0.33-0.15 and 16.8-23.4 $ with both Cr and DIZ concentration increased from 50 to 150 mg L-1. Also, EEO for Cr precipitation was 24.65 to 5.74 and for DIZ 12.54 to 4.73 (kwh m-3). Depending on the amount of energy consumption, TCS was 37.19 to 10.47 for Cr precipitation and 4.46 to 1.25 $. It is important to note that when both pollutants are exposed to ultraviolet light, more energy and cost are generally required from UV/DIZ process and less than of UV/Cr process. But it should be noted that in fact 50 mg L-1 of chromium and 50 mg L-1 of DIZ are being removed at the same time. In UV/DIZ and UV/Cr processes that are exposed to ultraviolet radiation alone, only one of them is removed. Also, when these two pollutants are being removed at the same time, the total amount of energy is much less than the total energy consumption of the pollutants one by one.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Esgotos/química , Fotólise , Diazinon , Raios Ultravioleta , Oxirredução , Cromo/química , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...