Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 261, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613580

RESUMO

Contrast enhancement is explored in optical coherence tomography images using core NaYF4:Ho3+/Yb3+ and core@shell NaYF4:Ho3+/Yb3+@NaGdF4 nanoparticles. Under 980 nm excitation, core@shell nanoparticles exhibited 2.8 and 3.3 times enhancement at 541 nm and 646 nm emission wavelengths of Ho3+ ions compared to core nanoparticles. Photo-thermal conversion efficiencies were 32% and 20% for core and core@shell nanoparticles. In swept-source optical coherence tomography (SSOCT), core@shell nanoparticles have shown superior contrast, while in photo-thermal optical coherence tomography (PTOCT) core nanoparticles have excelled due to their higher photo-thermal conversion efficiency. The enhancement in contrast to noise ratio obtained is 58 dB. Comparative assessments of scattering coefficients and contrast-to-noise ratios were conducted, providing insights into nanoparticle performance for contrast enhancement in optical coherence tomography.

2.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337250

RESUMO

In this study, electrically insulating polyolefin elastomer (POE)-based phase change materials (PCMs) comprising alumina (Al2O3) and graphene nanoplatelets (GNPs) are prepared using a conventional injection moulding technique, which exhibits promising applications for solar energy storage due to the reduced interfacial thermal resistance, excellent stability, and proficient photo-thermal conversion efficiency. A synergistic interplay between Al2O3 and GNPs is observed, which facilitates the establishment of thermally conductive pathways within the POE/paraffin wax (POE/PW) matrix. The in-plane thermal conductivity of POE/PW/GNPs 5 wt%/Al2O3 40 wt% composite reaches as high as 1.82 W m-1K-1, marking a remarkable increase of ≈269.5% when compared with that of its unfilled POE/PW counterpart. The composite exhibits exceptional heat dissipation capabilities, which is critical for thermal management applications in electronics. Moreover, POE/PW/GNPs/Al2O3 composites demonstrate outstanding electrical insulation, enhanced mechanical performance, and efficient solar energy conversion and transportation. Under 80 mW cm-2 NIR light irradiation, the temperature of the POE/PW/GNPs 5 wt%/Al2O3 40 wt% composite reaches approximately 65 °C, a notable 20 °C improvement when compared with the POE/PW blend. The pragmatic and uncomplicated preparation method, coupled with the stellar performance of the composites, opens a promising avenue and broader possibility for developing flexible PCMs for solar conversion and thermal storage applications.

3.
Angew Chem Int Ed Engl ; 63(10): e202318628, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38225206

RESUMO

An anion-counterion strategy is proposed to construct organic mono-radical charge-transfer cocrystals for near-infrared photothermal conversion and solar-driven water evaporation. Ionic compounds with halogen anions as the counterions serve as electron donors, providing the necessary electrons for efficient charge transfer with unchanged skeleton atoms and structures as well as the broad red-shifted absorption (200-2000 nm) and unprecedented photothermal conversion efficiency (~90.5 %@808 nm) for the cocrystals. Based on these cocrystals, an excellent solar-driven interfacial water evaporation rate up to 6.1±1.1 kg ⋅ m-2 ⋅ h-1 under 1 sun is recorded due to the comprehensive evaporation effect from the cocrystal loading in polyurethane foams and chimney addition, such performance is superior to the reported results on charge-transfer cocrystals or other materials for solar-driven interfacial evaporation. This prototype exhibits the great potential of cocrystals prepared by the one-step mechanochemistry method in practical large-scale seawater desalination applications.

4.
Small ; 20(14): e2308013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988642

RESUMO

Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF. In comparison to its 2D counterpart employing a 4-connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm-2 808 nm laser, the oxidized 3D COF samples ( I X - ${\mathrm{I}}_{\mathrm{X}}^{-}$ @TTF-8CHO-COF and Au NPs@TTF-8CHO-COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well-exposed TTF moieties.

5.
Gels ; 9(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998970

RESUMO

Light-responsive hydrogels containing light-thermal convertible pigments have received interest for their possible applications in light-responsive shutters, valves, drug delivery systems, etc. However, their utility is limited by the slow response time. In this study, we investigated the use of micro-nano bubble water as a preparation solvent to accelerate the volume phase transition kinetics of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) hydrogels. The hydrogels were characterized by dynamic light scattering (DLS) and dissolved oxygen (DO) measurements. The mechanical properties, surface morphology, and chemical composition of the hydrogels were analyzed by Young's modulus measurements, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy, respectively. The results showed that hydrogels prepared with bubble water changed the volume transition rate by more than two orders of magnitude by simply changing the standing time of the bubble water for only a few hours. The cooperative diffusion coefficients obtained from the light-induced volume transition kinetics correlated linearly with Young's modulus and metastable state swelling ratio. Our results suggest that bubbles act as efficient water channels, thereby modulating the response rate and providing a simple, additive-free method for preparing hydrogels with a wide range of response rates.

6.
Angew Chem Int Ed Engl ; 62(42): e202311387, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37650244

RESUMO

Diradicals based on the Blatter units and connected by acetylene and alkene spacers have been prepared. All the molecules show sizably large diradical character and low energy singlet-triplet gaps. Their photo-physical properties concerning their lowest energy excited state have been studied in detail by steady-state and time-resolved absorption spectroscopy. We have fully identified the main optical absorption band and full absence of emission from the lowest energy excited state. A computational study has been also carried out that has helped to identify the presence of a conical intersection between the lowest energy excited state and the ground state which produces a highly efficient light-to-heat conversion of the absorbed radiation. Furthermore, an outstanding photo-thermal conversion 77.23 % has been confirmed, close to the highest in the diradicaloid field. For the first time, stable diradicals are applied to photo-thermal therapy of tumor cells with good stability and satisfactory performance at near-infrared region.

7.
ChemSusChem ; 16(14): e202300644, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37277977

RESUMO

Inspired by the concept of ionic charge-transfer complexes for the Mott insulator, integer-charge-transfer (integer-CT) cocrystals are designed for NIR photo-thermal conversion (PTC). With amino-styryl-pyridinium dyes and F4TCNQ (7,7',8,8'-Tetracyano-2,3,5,6-tetrafluoroquinodimethane) serving as donor/acceptor (D/A) units, integer-CT cocrystals, including amorphous stacking "salt" and segregated stacking "ionic crystal", are synthesized by mechanochemistry and solution method, respectively. Surprisingly, the integer-CT cocrystals are self-assembled only through multiple D-A hydrogen bonds (C-H⋅⋅⋅X (X=N, F)). Strong charge-transfer interactions in cocrystals contribute to the strong light-harvesting ability at 200-1500 nm. Under 808 nm laser illumination, both the "salt" and "ionic crystal" display excellent PTC efficiency beneficial from ultrafast (∼2 ps) nonradiative decay of excited states. Thus integer-CT cocrystals are potential candidates for rapid, efficient, and scalable PTC platforms. Especially amorphous "salt" with good photo/thermal stability is highly desirable in practical large-scale solar-harvesting/conversion applications in water environment. This work verifies the validity of the integer-CT cocrystal strategy, and charts a promising path to synthesize amorphous PTC materials by mechanochemical method in one-step.

8.
Nanomaterials (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242077

RESUMO

The inherently intermittent feature of solar energy requires reliable energy conversion and storage systems for utilizing the most abundant solar energy. Phase change materials are potential solutions to store a large amount of heat produced by solar light. However, few of the phase change materials have the ability to efficiently convert solar energy into heat; additionally, phase change materials need to be encapsulated in porous substrates for enhancing their leaking resistance and photo-to-thermal performance. In this work, monolithic MXene aerogels, fabricated by Al3+ cross-linking and freeze-drying, were used as the encapsulation and photothermal materials. The composites phase change materials of MXene/polyethylene glycol can be made with a large polyethylene glycol loading above 90 wt% with the maximum of 97 wt%, owing to the large porosity of MXene aerogels. The low content of MXene has a limited impact on the phase transition temperature and enthalpy of polyethylene glycol, with an enthalpy retention rate ranging from 89.2 to 96.5% for 90-97 wt% polyethylene glycol loadings. MXene aerogels greatly improve the leaking resistance of polyethylene glycol above its melting point of 60 °C, even at 100 °C. The composites phase change materials also show outstanding cycling stability for 500 cycles of heat storage and release, retaining 97.7% of the heat storage capability. The optimized composite phase change material has a solar energy utilization of 93.5%, being superior to most of the reported results. Our strategy produces promising composite phase change materials for solar energy utilization using the MXene aerogels as the encapsulation and photothermal materials.

9.
Nanomaterials (Basel) ; 13(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770424

RESUMO

Through the execution of scientific innovations, "smart materials" are shaping the future of technology by interacting and responding to changes in our environment. To make this a successful reality, proper component selection, synthesis procedures, and functional active agents must converge in practical and resource-efficient procedures to lay the foundations for a profitable and sustainable industry. Here we show how the reaction time, temperature, and surface stabilizer concentration impact the most promising functional properties in a cotton-based fabric coated with silver nanoparticles (AgNPs@cotton), i.e., the thermal and bactericidal response. The coating quality was characterized and linked to the selected synthesis parameters and correlated by a parallel description of "proof of concept" experiments for the differential heat transfer (conversion and dissipation properties) and the bactericidal response tested against reference bacteria and natural bacterial populations (from a beach, cenote, and swamp of the Yucatan Peninsula). The quantification of functional responses allowed us to establish the relationship between (i) the size and shape of the AgNPs, (ii) the collective response of their agglomerates, and (iii) the thermal barrier role of a surface modifier as PVP. The procedures and evaluations in this work enable a spectrum of synthesis coordinates that facilitate the formulation of application-modulated fabrics, with grounded examples reflected in "smart packaging", "smart clothing", and "smart dressing".

10.
Small ; 19(18): e2207467, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36634976

RESUMO

Utilization of low-energy photons for efficient photocatalysis remains a challenging pursuit. Herein, a strategy is reported to boost the photocatalytic performance, by promoting low-energy photons dual harvest through bimodal surface plasmon resonance (SPR)-enhanced synergistically upconversion and pyroelectricity. It is achieved by introducing triplet-triplet annihilation upconversion (TTA-UC) materials and plasmonic material (Au nanorods, AuNRs) into composite fibers composed of pyroelectric substrate (poly(vinylidene fluoride)) and photocatalyst Cd0.5 Zn0.5 S. Interestingly, the dual combination of TTA-UC and AuNRs SPR in the presence of polyvinylidene fluoride substrate with pyroelectric property promotes the photocatalytic hydrogen evolution performance by 2.88 folds with the highest average apparent quantum yield of 7.0% under the low-energy light (λ > 475 nm), which far outweighs the role of separate application of TTA-UC (34%) and AuNRs SPR (76%). The presence of pyroelectricity plays an important role in the built-in electric field as well as the accordingly photogenerated carrier behavior in the composite photocatalytic materials, and the pyroelectricity can be affected by AuNRs with different morphologies, which is proved by the Kelvin probe force microscopy and photocurrent data. This work provides a new avenue for fully utilizing low-energy photons in the solar spectrum for improving photocatalytic performance.

11.
J Colloid Interface Sci ; 629(Pt A): 478-486, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088693

RESUMO

Novel phase change materials composed of polyethylene glycol (PEG), cellulose nanofibers (CNFs) and carbon nanotubes (CNTs) were developed by an efficient and environment friendly strategy. The CNFs were modified and cross-linked by chitosan to form three-dimensional network structure, which provides strong support for the resulting CNF/CNT/PEG composites. The structure and properties of CNF/CNT/PEG composites were characterized using scanning electron microscopy, spectrums, and differential scanning calorimeter. They exhibit high latent heat (158.3 J/g), low heat loss (0.75%) and excellent photo-thermal conversion (energy storage efficiency 85.6%), electro-thermal conversion (energy storage efficiency 92.3%) properties. Due to their excellent performances, CNF/CNT/PEG composites have great potential to be used as thermal management materials.


Assuntos
Quitosana , Nanofibras , Nanotubos de Carbono , Nanofibras/química , Celulose/química , Nanotubos de Carbono/química , Polietilenoglicóis
12.
J Colloid Interface Sci ; 630(Pt A): 23-33, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215821

RESUMO

Adhesion between flexible devices and skin surface facilitates portability of devices and reliable signal acquisition from human body, which is essential for medical therapy devices or monitoring systems. Here, we utilize a simple, cost-effective, and scalable layer-by-layer dip-coating method to fabricate a skin-adhesive multifunctional textile-based device, consisting of three parts: low-cost and easily available airlaid paper (AP) substrate, conductive MXene sensitive layer, and adhesive polydimethylsiloxane (PDMS). The adhesive layer of lightly cross-linked PDMS enables the device to form conformal contact with skin even during human joint bending. The smart textile device exhibits excellent electro-thermal and photo-thermal conversion performance with good cycling stability and tunability. Furthermore, the textile electronics show good electromagnetic interference (EMI) shielding properties due to the good electrical conductivity, as well as sensitive and stable pressure sensing properties for human motion detection. Consequently, this efficient strategy provides a possible way to design multifunctional and wearable electronic textiles for medical applications.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Adesivos , Calefação , Têxteis , Eletrônica , Condutividade Elétrica
13.
Polymers (Basel) ; 14(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501556

RESUMO

A series of polyurethane/graphene oxide (PU/GO) solid-solid phase change materials (SSPCMs) were synthesized by using GO as a light-absorbing filler and polyethylene glycol (PEG) as a phase change matrix. The effects of PEG content on the energy storage capacity, thermal stability and photo-thermal conversion performance of PU were investigated. The results show that the form-stability of PU/GO decreases while the phase change enthalpy and photo-thermal conversion efficiency of PU/GO increases with the increasing PEG content. The introduction of a very low content of GO can maintain comparable energy storage density and greatly improve light absorption by reasonably modulating the soft segment contents. The PU/GO composite with 92 wt% PEG has a phase change enthalpy of 138.12 J/g and a high photo-thermal conversion efficiency (87.6%). The composite solid-solid PCMs have great potential for effective energy storage and solar energy utilization.

14.
J Hazard Mater ; 437: 129446, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35897192

RESUMO

In this work, a series of polymer materials including pomelo peel, cotton fabric, polyurethane foam, and so on, are treated by heated CH3SiCl3, presenting desirable photo-thermal conversion function and hydrophobicity. As a representative material, the surface element and skeleton morphology of pomelo peel foam treated by CH3SiCl3 are analyzed detailedly. It is found that well-hydrophobicity (water contact angle of ~147°) and photo-thermal conversion performance (~91.2 °C under one sun) are attributed to the surface carbonization reaction and formation of CH3-SiO2 nanoparticles. Meanwhile, the treatment of CH3SiCl3 significantly increases the BET surface area to 3.0635 m²/g from 0.0973 m²/g. Therefore, pomelo peel-derived carbon foam presents a desirable adsorption capacity of organic solvents and oils (up to 43.2 times its original weight) and excellent removal efficiency (>99.0%). In addition, the rapid photo-thermal response (achieve ~73 °C at 40 s) and high equilibrium temperature (~91.2 °C) are als° demonstrated in pomelo peel-derived carbon foam. As a result, the absorption rate of highly-viscous oils is effectively promoted by the higher fluidity and capillary action caused by the solar-promoted mechanism. This study offers a scalable, easily operated, and environmentally friendly approach to prepare hydrophobic and photo-thermal materials, thus demonstrating a huge potential in oil/water separation application.

15.
Colloids Surf B Biointerfaces ; 211: 112321, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032850

RESUMO

It is still a challenge to improve ionization efficiency of saccharides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Herein, the highly curved onion-like carbon nanoparticles (OCS) were synthesized from the low-price candle raw via a facile strategy. The unique nanostructure of OCS showed large surface area with plentiful mesoporous architecture, highly curved sp2 carbon with regulating electronic effect, and good hydrophilicity, which could be beneficial to facilitate the desorption and ionization efficiency in MS process. The prepared OCS material as MALDI matrix exhibited the superior performance for the detection of xylose, glucose, maltose monohydrate, and raffinose pentahydrate in positive-ion mode with low background noise, enhanced ion intensities, uniform distribution, excellent reproducibility, good salt-tolerance, and high sensitivity compared to control candle soot (CS) and traditional α-cyano-4-hydroxycinnamic acid (CHCA) matrices. This highly effective LDI of OCS matrix was attributed to its enhancing local electric field effect, strong UV absorption ability, and high photo-thermal conversion performance. Furthermore, the OCS-assisted LDI MS approach was employed to quantitatively detect glucose in rat serum. This LDI MS platform may have valuable for the analysis of metabolites in clinical research.


Assuntos
Nanopartículas , Cebolas , Animais , Carbono , Lasers , Nanopartículas/química , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Environ Sci Pollut Res Int ; 29(9): 13188-13200, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34585351

RESUMO

This work aims to explore the optical and thermal conversion characteristics of activated carbon-solar glycol nanofluids with various volume fractions namely 0.2, 0.4, and 0.6%, respectively. Kigelia africana leaves were synthesized into porous activated carbon nanomaterials by using the high-temperature sintering process and the pyrolysis process in a muffle furnace. The experimental investigation was carried out with different nanofluid concentrations by using the solar simulator. Nanofluids were heated with the assistance of a solar simulator test system and the convection/conduction heat loss was decreased by using the glass as an insulating material around the test section. Prepared nanofluid with 0.6 vol% activated carbon augmented the thermal conductivity by 14.36% at 60°C. The maximum temperature difference of 10°C was attained at 0.6% volume concentrations of nanofluid as compared with base fluid (solar glycol). In addition, maximum receiver efficiency of 94.51% was attained at 0.6% volume fractions of activated carbon-based nanofluid compared with solar glycol thru a light radiation time of 600 s. Moreover, activated carbon-based nanofluid exhibited significantly higher absorption efficiency as the majority of the radiation was absorbed by the nanofluid. It is concluded that activated carbon-based nanofluids could be a suitable low-cost highly stable material for developing working fluid for direct absorbance solar collector-based applications.


Assuntos
Carvão Vegetal , Luz Solar , Convecção , Temperatura Alta , Condutividade Térmica
17.
ACS Appl Mater Interfaces ; 13(50): 60478-60488, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894671

RESUMO

Stretchability and multifunctional heating abilities are highly desired for wearable electromagnetic interference (EMI) shielding fabrics to tackle the growing electromagnetic pollution for special crowd, such as pregnant women. Herein, we fabricated stretchable MXene-coated thermoplastic polyurethane (TPU) fabrics by simple uniaxial prestretching and spraying methods. The obtained unique wrinkled structure endowed the film with effective strain-invariant electrical conductivity and EMI shielding properties. Specifically, the prepared stretchable film with an extremely low MXene loading (0.417 mg cm-2) exhibited a stable EMI shielding effectiveness of approximately 30 dB under 50% tensile strain and durability during stretching and bending cycles. More importantly, owing to the high electrical conductivity and localized surface plasmon resonance (LSPR) effect of the MXene layer, the stretchable fabrics exhibited excellent Joule heating (up to 104 °C at a voltage of 5 V) and superior photothermal conversion abilities. Moreover, the unique wrinkled MXene-coating layer not only endows the fabrics with stretchable heat abilities but also enhances the photothermal conversion performance by increasing the light absorption area and travel path. We believe that this study offers a novel strategy for the versatile design of stretchable and multifunctional wearable shielding fabrics.

18.
Environ Res ; 194: 110720, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444609

RESUMO

Waste biomass and dye wastewater pollution have been the serious environmental problems. The interfacial solar-steam generation technology is an effective and sustainable method for the water purification. However, the complex preparation process, high economic cost and probably secondary environmental pollution of traditional photo-thermal materials restricted their practical large-scale application. Herein, the biochar cakes (BCs) deriving from waste biomass were prepared, and the granular and schistose MgO coatings were dressed on the surface of carbonized fiber to improve their hydrophilicity. The BCs with high solar absorbance and super-hydrophilicity were applied in the photo-thermal purification of dye wastewater with solar energy. The highest evaporation rate of dye wastewater with BCs reached 2.27 kg m-2 h-1, and the corresponding conversion efficiency of solar to steam generation was 78.98% under the simulated solar irradiation (1846.0 w/m2). The collected clean water from the solar-steam evaporators reached the emission standards of EU Water Framework Directive (91/271/EEC). Considering the simple and economical preparation method, this process made the practical large-scale application of photo-thermal BCs on dye wastewater treatment a reality, and also provided a cost-effective management strategy for the waste biomass.


Assuntos
Energia Solar , Purificação da Água , Biomassa , Carvão Vegetal , Análise Custo-Benefício
19.
Carbohydr Polym ; 255: 117333, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436176

RESUMO

The development of multifunctional microwave absorbers that worked in complex environments remains challenging. In this study, oil-in-water Pickering emulsion gelation approach was combined with freeze-drying to prepare foam-based microwave absorbers along with appealing photo-thermal conversion and thermal insulation. In hybrid foam, cellulose nanofibrils (CNF) and polylactic acid (PLA) serve as three-dimensional skeleton, where carbon nanotubes (CNT) and Fe3O4 nanoparticles are homogeneously incorporated, which forms a conductive network with hetero-interfaces. The optimal reflection loss value of the foam reaches -65.14 dB with a thickness of 3.0 mm. The foam also demonstrate high photo-thermal conversion performance with its surface temperature up to 97 °C after irradiation under 1 Sun for 5 min. Additionally, the foam shows superior thermal insulation comparing with the commercial polyvinyl alcohol and polyurethane foams. This study may offer a promising approach to develop ultralight and high-performance microwave absorber with great potential for multifunctional applications.

20.
J Colloid Interface Sci ; 582(Pt B): 496-505, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911398

RESUMO

Efficient solar vapor generation has provided a feasible way to solve the water shortage in undeveloped and arid areas. However, some photo-thermal materials need additional large-volume support materials being harmful to carry around to obtain float capacity, while suppressing the solar steam generation. Herein, the decrease approach of surface tension was presented for solving the moist-environment degradation behavior of black phosphorus (BP) nanosheets and obtaining the self-floating capacity, thus applying BP nanosheets in solar vapor generation field. With the in situ cross-linking polymerization, trichloro(1H,1H,2H,2H-perfluorooctyl) silane successfully modified BP nanosheets (F-BP). Due to the significantly decreased surface tension, F-BP nanosheets are capable of self-floating easily on water surface and spreading out spontaneously. With assistance of desirable photo-thermal conversion capacity, self-floating BP nanosheets convert the incident photon into local heat, showing excellent vapor generation performance. With simulated sun illumination (1 kW/m2), 238.7 g/m2 BP nanosheets present the evaporation rate of ~0.9437 kg/(m2·h) and efficiency of ~64.63 ± 2.3%. Meanwhile, the super-hydrophobicity successfully imparts BP nanosheets with resistance to the deterioration caused by salt precipitation. The carriable F-BP nanosheets are an ideal photo-thermal convertor to produce drinking water, successfully providing a feasible way to solve water shortage in limited condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...