Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.561
Filtrar
1.
Environ Toxicol Pharmacol ; 110: 104517, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032581

RESUMO

Nuclear and radiological accidents can occur due to poor management, in transportation, radiation therapy and nuclear wards in hospitals, leading to extreme radiation exposure and serious consequences for human health. Additionally, in many of previous radiological accidents, skin damage was observed in patients and survivors due to the high radiation exposure. However, as part of a medical countermeasures in a nuclear/radiological emergency, it is critical to plan for the treatment of radiation-induced skin damage. Hence, the new, non-invasive technology of photodynamic therapy (PDT) is projected to be more effectively used for treating skin damage caused by high-dose radiation. PDT plays an important role in treating, repairing skin damage and promoting wound healing as evidenced by research. This review, highlighted and recommended potential impacts of PDT to repair and decrease radiation-induced skin tissue damage. Moreover, we have suggested some photosensitizer (PS) agent as radio-mitigator drugs to decrease radiobiological effects.

2.
Adv Mater ; : e2405890, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045923

RESUMO

Mild-hyperthermia photothermal therapy (mPTT) has therapeutic potential with minimized damage to normal tissues. However, the poorly vascularized tumor area severely hampers the penetration of photothermal agents (PTAs), resulting in their heterogeneous distribution and the subsequent heterogeneous local temperature during mPTT. The presence of regions below the therapeutic 42 °C threshold can lead to incomplete tumor ablation and potential recurrence. Additionally, tumor anti-apoptosis and cytoprotection pathways, particularly activated thermoresistance, can nullify mild hyperthermia-induced tumor damage. Therefore, a bioinspired photosensitizer decorated with leucine to form biomimetic nanoclusters (CP-PLeu nanoparticles (NPs)) aimed at achieving rapid and homogeneous accumulation in tumors, is introduced. Moreover, CP-PLeu exhibits photodynamic effects that reverse tumor thermoresistance and physiological repair mechanisms, thereby inhibiting tumor resistance to hyperthermia. With the addition of NIR-II laser irradiation, CP-PLeu optimizes the therapeutic efficacy of mPTT and contributes to a minimally invasive therapeutic process for breast cancer. This therapeutic strategy, utilizing a biomimetic photosensitizer for homogeneous distribution of therapeutic temperature and photoactivated reversal of tumor thermoresistance, successfully achieves efficient breast tumor inhibition through an atraumatic mPTT process.

3.
Bioengineering (Basel) ; 11(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061733

RESUMO

The functional investigation of proteins holds immense significance in unraveling physiological and pathological mechanisms of organisms as well as advancing the development of novel pharmaceuticals in biomedicine. However, the study of cellular protein function using conventional genetic manipulation methods may yield unpredictable outcomes and erroneous conclusions. Therefore, precise modulation of protein activity within cells holds immense significance in the realm of biomedical research. Chromophore-assisted light inactivation (CALI) is a technique that labels photosensitizers onto target proteins and induces the production of reactive oxygen species through light control to achieve precise inactivation of target proteins. Based on the type and characteristics of photosensitizers, different excitation light sources and labeling methods are selected. For instance, KillerRed forms a fusion protein with the target protein through genetic engineering for labeling and inactivates the target protein via light activation. CALI is presently predominantly employed in diverse biomedical domains encompassing investigations into protein functionality and interaction, intercellular signal transduction research, as well as cancer exploration and therapy. With the continuous advancement of CALI technology, it is anticipated to emerge as a formidable instrument in the realm of life sciences, yielding more captivating outcomes for fundamental life sciences and precise disease diagnosis and treatment.

4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000219

RESUMO

Chlorin e6 is a well-known photosensitizer used in photodynamic diagnosis and therapy. A method for identifying and purifying a novel process-related impurity during the synthesis of chlorin e6 has been developed. Its structure was elucidated using NMR and HRMS. This new impurity is formed from chlorophyll b rather than chlorophyll a, which is the source of chlorin e6. The intermediates formed during chlorin e6 synthesis were monitored using HPLC-mass spectrometry. This new impurity was identified as rhodin g7 71-ethyl ester, the structure of which remains unknown to date. The cytotoxic effects of this novel compound in both dark and light conditions were studied against five cancer cell lines (HT29, MIA-PaCa-2, PANC-1, AsPC-1, and B16F10) and a normal cell line (RAW264.7) and compared to those of chlorin e6. Upon irradiation using a laser at 0.5 J/cm2, rhodin g7 71-ethyl ester demonstrated higher cytotoxicity (2-fold) compared to chlorin e6 in the majority of the cancer cell lines. Furthermore, this new compound exhibited higher dark cytotoxicity compared to chlorin e6. Studies on singlet oxygen generation, the accumulation in highly vascular liver tissue, and the production of reactive oxygen species in MIA-PaCa-2 cancer cells via rhodin g7 71-ethyl ester correspond to its higher cytotoxicity as a newly developed photosensitizer. Therefore, rhodin g7 71-ethyl ester could be employed as an alternative or complementary agent to chlorin e6 in the photodynamic therapy for treating cancer cells.


Assuntos
Clorofilídeos , Fármacos Fotossensibilizantes , Porfirinas , Porfirinas/química , Porfirinas/farmacologia , Humanos , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fotoquimioterapia/métodos , Oxigênio Singlete/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
5.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000317

RESUMO

Chemotherapy is among the main classical approaches to the treatment of oncologic diseases. Its efficiency has been comprehensively proven by clinical examinations; however, the low selectivity of chemotherapeutic agents limits the possibilities of this method, making it necessary to search for new approaches to the therapy of oncologic diseases. Photodynamic therapy is the least invasive method and a very efficient alternative for the treatment of malignant tumors; however, its efficiency depends on the depth of light penetration into the tissue and on the degree of oxygenation of the treatment zone. In this work, a hitherto unknown conjugate of a natural bacteriochlorin derivative and doxorubicin was obtained. In vitro and in vivo studies showed a more pronounced activity of the conjugate against MCF-7 and 4T1 cells and its higher tumorotropicity in animal tumor-bearing animals compared to free anthracycline antibiotic. The suggested conjugate implements the advantages of photodynamic therapy and chemotherapy and has great potential in cancer treatment.


Assuntos
Doxorrubicina , Fotoquimioterapia , Porfirinas , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Fotoquimioterapia/métodos , Animais , Humanos , Camundongos , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Feminino , Células MCF-7 , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
J Photochem Photobiol B ; 258: 112979, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39003970

RESUMO

Bioluminescence resonance energy transfer photodynamic therapy, which uses light generated by bioluminescent proteins to activate photosensitizers and produce reactive oxygen species without the need for external irradiation, has shown promising results in cancer models. However, the characterization of delivery systems that can incorporate the components of this therapy for preferential delivery to the tumor remains necessary. In this work, we have characterized parvovirus B19-like particles (B19V-VLPs) as a platform for a photosensitizer and a bioluminescent protein. By chemical and biorthogonal conjugation, we conjugated rose Bengal photosensitizer and firefly luciferase to B19V-VLPs and a protein for added specificity. The results showed that B19V-VLPs can withstand decoration with all three components without affecting its structure or stability. The conjugated luciferase showed activity and was able to activate rose Bengal to produce singlet oxygen without the need for external light. The photodynamic reaction generated by the functionalized VLPs-B19 can decrease the viability of tumor cells in vitro and affect tumor growth and metastasis in the 4 T1 model. Treatment with functionalized VLPs-B19 also increased the percentage of CD4 and CD8 cell populations in the spleen and in inguinal lymph nodes compared to vehicle-treated mice. Our results support B19V-VLPs as a delivery platform for bioluminescent photodynamic therapy components to solid tumors.

7.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998711

RESUMO

We present the design, synthesis, and evaluation of novel metal-free photosensitizers based on D-π-A structures featuring tri-arylamine as an electron donor, cyanoacrylic acid as an anchoring group, and substituted derivative π-bridges including 9,9-dimethyl-9H-fluorene, benzo[b]thiophene, or naphtho [1,2-b:4,3-b']dithiophene. The aim of the current research is to unravel the relationship between chemical structure and photovoltaic performance in solar cell applications by investigating the properties of these organic sensitizers. The newly developed photosensitizers displayed variations in HOMO-LUMO energy gaps and photovoltaic performances due to their distinct π-bridge structures and exhibited diverse spectral responses ranging from 343 to 490 nm. The t-shaped and short linear photosensitizers demonstrated interesting behaviors in dye-sensitized solar cells, such as the effect of the molecular size in electron recombination. The study showed that a t-shaped photosensitizer with a bulky structure reduced electron recombination, while short linear photosensitizers with a smaller molecular size resulted in a higher open-circuit voltage value and enhanced photovoltaic performance. Impedance analysis further supported the findings, highlighting the influence of dye loading and I3- ion surface passivation on the overall performance of solar cells. The molecular design methodology proposed in this study enables promising photovoltaic performance in solar cells, addressing the demand for highly efficient, metal-free organic photosensitizers.

8.
ACS Nano ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033413

RESUMO

Photodynamic therapy (PDT) emerges as a promising strategy for combating bacteria with minimal drug resistance. However, a significant hurdle lies in the ineffectiveness of most photosensitizers against Gram-negative bacteria, primarily attributable to their characteristic impermeable outer membrane (OM) barrier. To tackle this obstacle, we herein report an amphipathic peptide-photosensitizer conjugate (PPC) with intrinsic outer membrane disruption capability to enhance PDT efficiency against Gram-negative bacteria. PPC is constructed by conjugating a hydrophilic ultrashort cationic peptide to a hydrophobic photosensitizer. PPC could efficiently bind to the OM of Gram-negative bacteria through electrostatic adsorption, and subsequently disrupt the structural integrity of the OM. Mechanistic investigations revealed that PPC triggers membrane disruption by binding to both lipopolysaccharide (LPS) and phospholipid leaflet in the OM, enabling effective penetration of PPC into the Gram-negative bacteria interior. Upon light irradiation, PPC inside bacteria generates singlet oxygen not only to effectively decrease the survival of Gram-negative bacteria P. aeruginosa and E. coli to nearly zero in vitro, but also successfully cure the full-thickness skin infection and bacterial keratitis (BK) induced by P. aeruginosa in animal models. Thus, this study provides a broad-spectrum antibacterial phototherapeutic design strategy by the synergistic action of membrane disruption and PDT to combat Gram-negative bacteria.

9.
Cells ; 13(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38994936

RESUMO

Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.


Assuntos
Carbazóis , Receptores de Hidrocarboneto Arílico , Pele , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Pele/metabolismo , Carbazóis/farmacologia , Luz , Animais , Visão Ocular/fisiologia , Transdução de Sinais
10.
BMC Complement Med Ther ; 24(1): 270, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010043

RESUMO

BACKGROUND: Medicinal plant-mediated combinational therapies have gained importance globally due to minimal side effects and enhanced treatment outcomes compared to single-drug modalities. We aimed to analyze the cytotoxic potential of each conventional treatment i.e., photodynamic therapy (PDT), chemotherapy (doxorubicin hydrochloride; Dox-HCl) with or without various concentrations of medicinal plant extracts (PE) on soft tissue cancer Rhabdomyosarcoma (RD) cell line. METHODS: The Rhabdomyosarcoma (RD) cell line was cultured and treated with Photosensitizer (Photosense (AlPc4)), Chemo (Dox-HCl), and their combinations with different concentrations of each plant extract i.e., Thuja occidentalis, Moringa oleifera, Solanum surattense. For the source of illumination, a Diode laser (λ = 630 nm ± 1 nm, Pmax = 1.5 mW) was used. Photosensitizer uptake time (∼ 45 min) was optimized through spectrophotometric measurements (absorption spectroscopy). Drug response of each treatment arm was assessed post 24 h of administration using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- 5-diphenyl-2 H- tetrazolium bromide (MTT) assay. RESULTS: PE-mediated Chemo-Photodynamic therapy (PDT) exhibited synergistic effects (CI < 1). Moreover, Rhabdomyosarcoma culture pretreated with various plant extracts for 24 h exhibited significant inhibition of cell viability however most effective outcomes were shown by low and high doses of Moringa oleifera compared to other plant extracts. Post low doses treated culture with all plant extracts followed by PDT came up with more effectiveness when compared to all di-therapy treatments. CONCLUSION: The general outcome of this work shows that the ethanolic plant extracts (higher doses) promote the death of cancerous cells in a dose-dependent way and combining Dox-HCl and photo-mediated photodynamic therapy can yield better therapeutic outcomes.


Assuntos
Doxorrubicina , Fotoquimioterapia , Fármacos Fotossensibilizantes , Extratos Vegetais , Plantas Medicinais , Rabdomiossarcoma , Fotoquimioterapia/métodos , Humanos , Doxorrubicina/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Plantas Medicinais/química , Solanum/química , Sobrevivência Celular/efeitos dos fármacos , Moringa oleifera/química
11.
Pharmaceutics ; 16(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065629

RESUMO

Cancer remains a significant global health challenge, with traditional therapies like surgery, chemotherapy, and radiation often accompanied by systemic toxicity and damage to healthy tissues. Despite progress in treatment, these approaches have limitations such as non-specific targeting, systemic toxicity, and resistance development in cancer cells. In recent years, nanotechnology has emerged as a revolutionary frontier in cancer therapy, offering potential solutions to these challenges. Nanoparticles, due to their unique physical and chemical properties, can carry therapeutic payloads, navigate biological barriers, and selectively target cancer cells. Metal-based nanoparticles, in particular, offer unique properties suitable for various therapeutic applications. Recent advancements have focused on the integration of metal-based nanoparticles to enhance the efficacy and precision of photodynamic therapy. Integrating nanotechnology into cancer therapy represents a paradigm shift, enabling the development of strategies with enhanced specificity and reduced off-target effects. This review aims to provide a comprehensive understanding of the pivotal role of metal-based nanoparticles in photodynamic therapy. We explore the mechanisms, biocompatibility, and applications of metal-based nanoparticles in photodynamic therapy, highlighting the challenges and the limitations in their use, as well as the combining of metal-based nanoparticles/photodynamic therapy with other strategies as a synergistic therapeutic approach for cancer treatment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-39042585

RESUMO

The spin-orbit charge transfer intersystem crossing (SOCT-ISC) photophysical process has shown great potential for constructing heavy-atom-free photosensitizers (PSs) for photodynamic therapy (PDT) of tumors. However, for almost all such PSs reported to date, the SOCT-ISC is driven by the acceptor-excited photoinduced electron transfer (a-PeT). In this work, for the first time the donor-excited photoinduced electron transfer (d-PeT)-driven SOCT-ISC mechanism is utilized to construct the heavy-atom-free PSs for PDT of tumors by directly installing the electron-deficient N-alkylquinolinium unit (as an electron acceptor) into the meso-position of the near-infrared (NIR) distyryl Bodipy chromophore (as an electron donor). In the less polar environment, the PSs exist as the monomer and promote the production of singlet oxygen (1O2) (Type-II) relying on the d-PeT-driven population of the triplet excited state via SOCT-ISC, whereas in the aqueous environment, they exist as nanoaggregates and induce the generation of superoxides (O2-•) and hydroxyl radicals (HO•) (Type-I) via the d-PeT-driven formation of the delocalized charge-separated state. The PSs could rapidly be internalized into cancer cells and induce the simultaneous production of intracellular 1O2, O2-•, and HO• upon NIR light irradiation, endowing the PSs with superb photocytotoxicity with IC50 values up to submicromolar levels whether under normoxia or under hypoxia. Based on the PSs platform, a tumor-targetable PS is developed, and its abilities in killing cancer cells and in ablating tumors without damage to normal cells/tissues under NIR light irradiation are verified in vitro and in vivo. The study expands the design scope of PSs by introducing the d-PeT conception, thus being highly valuable for achieving novel PSs in the realm of tumor PDT.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39041453

RESUMO

Despite the potential of photodynamic therapy (PDT) in cancer treatment, the development of efficient and photostable photosensitizing molecules that operate at long wavelengths of light has become a major hurdle. Here, we report for the first time an Ir(III)-phthalocyanine conjugate (Ir-ZnPc) as a novel photosensitizer for high-efficiency synergistic PDT treatment that takes advantage of the long-wavelength excitation and near infrared (NIR) emission of the phthalocyanine scaffold and the known photostability and high phototoxicity of cyclometalated Ir(III) complexes. In order to increase water solubility and cell membrane permeability, the conjugate and parent zinc phthalocyanine (ZnPc) were encapsulated in amphoteric redox-responsive polyurethane-polyurea hybrid nanocapsules (Ir-ZnPc-NCs and ZnPc-NCs, respectively). Photobiological evaluations revealed that the encapsulated Ir-ZnPc conjugate achieved high photocytotoxicity in both normoxic and hypoxic conditions under 630 nm light irradiation, which can be attributed to dual Type I and Type II reactive oxygen species (ROS) photogeneration. Interestingly, PDT treatments with Ir-ZnPc-NCs and ZnPc-NCs significantly inhibited the growth of three-dimensional (3D) multicellular tumor spheroids. Overall, the nanoencapsulation of Zn phthalocyanines conjugated to cyclometalated Ir(III) complexes provides a new strategy for obtaining photostable and biocompatible red-light-activated nano-PDT agents with efficient performance under challenging hypoxic environments, thus offering new therapeutic opportunities for cancer treatment.

14.
Photochem Photobiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953399

RESUMO

Aiming at the application to photodynamic therapy, natural bacteriochlorophyll-a was converted to chemically stable free-base derivatives possessing different kinds of hydrophilic C17-propionate residues. These semi-synthetic bacteriochlorins were found to have self-assembling ability in an aqueous environment and formed stable J-type aggregates in a cell culture medium containing 0.2% DMSO. The electronic absorption spectra of all the sensitizers showed Qy absorption maxima at 754 nm in DMSO as their monomeric states, while a drastic shift of the red-most bands to ca. 880 nm was observed in the aqueous medium. The circular dichroism spectra in the medium showed much intense signals compared to those measured in DMSO, supporting the formation of well-ordered supramolecular structures. By introducing hydrophilic side chains, the bacteriochlorin sensitizers could be dispersed in the aqueous medium as their J-aggregates without the use of any surfactants. Cellular uptake efficiencies as well as photodynamic activities were evaluated using human cervical adenocarcinoma HeLa cells. Among the 11 photosensitizers investigated, the best result was obtained for a charged derivative possessing trimethylammonium terminal (17-CH2CH2COOCH2CH2N+(CH3)3I-) and photocytotoxicity of EC50 = 0.09 µM was achieved by far-red light illumination of 35 J/cm2 from an LED panel (730 nm).

15.
Mol Imaging Biol ; 26(4): 616-627, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38890241

RESUMO

Photodynamic therapy (PDT) is a light-based anticancer therapy that can induce tumor necrosis and/or apoptosis. Two important factors contributing to the efficacy of PDT are the concentration of the photosensitizer in the tumor tissue and its preferential accumulation in the tumor tissue compared to that in normal tissues. In this study, we investigated the use of optical imaging for monitoring whole-body bio-distribution of the fluorescent (660 nm) photosensitizer Bremachlorin in vivo, in a murine pancreatic ductal adenocarcinoma (PDAC) model. Moreover, we non-invasively, examined the induction of tumor necrosis after PDT treatment using near-infrared fluorescent imaging of the necrosis avid cyanine dye IRDye®-800CW Carboxylate. Using whole-body fluorescence imaging, we observed that Bremachlorin preferentially accumulated in pancreatic tumors. Furthermore, in a longitudinal study we showed that 3 hours after Bremachlorin administration, the fluorescent tumor signal reached its maximum. In addition, the tumor-to-background ratio at all-time points was approximately 1.4. Ex vivo, at 6 hours after Bremachlorin administration, the tumor-to-muscle or -normal pancreas ratio exhibited a greater difference than it did at 24 hours, suggesting that, in terms of efficacy, 6 hours after Bremachlorin administration was an effective time point for PDT treatment of PDAC. In vivo administration of the near infrared fluorescence agent IRDye®-800CW Carboxylate showed that PDT, 6 hours after administration of Bremachlorin, selectively induced necrosis in the tumor tissues, which was subsequently confirmed histologically. In conclusion, by using in vivo fluorescence imaging, we could non-invasively and longitudinally monitor, the whole-body distribution of Bremachlorin. Furthermore, we successfully used IRDye®-800CW Carboxylate, a near-infrared fluorescent necrosis avid agent, to image PDT-induced necrotic cell death as a measure of therapeutic efficacy. This study showed how fluorescence can be applied for optimizing, and assessing the efficacy of, PDT.


Assuntos
Carcinoma Ductal Pancreático , Indóis , Necrose , Imagem Óptica , Neoplasias Pancreáticas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/farmacocinética , Camundongos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico por imagem , Indóis/química , Distribuição Tecidual , Modelos Animais de Doenças , Linhagem Celular Tumoral , Imagem Corporal Total/métodos , Feminino , Combinação de Medicamentos , Porfirinas
16.
Chemistry ; : e202401483, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853431

RESUMO

Herein, we report a novel flavin analogue as singular chemical component for lysosome bioimaging, and inherited photosensitizer capability of the flavin core was demonstrated as a promising candidate for photodynamic therapy (PDT) application. Fine-tuning the flavin core with the incorporation of methoxy naphthyl appendage provides an appropriate chemical design, thereby offering photostability, selectivity, and lysosomal colocalization, along with the aggregation-induced emissive nature, making it suitable for lysosomal bioimaging applications. Additionally, photosensitization capability of the flavin core with photostable nature of the synthesized analogue has shown remarkable capacity for generating reactive oxygen species (ROS) within cells, making it a promising candidate for photodynamic therapy (PDT) application.

17.
Environ Sci Technol ; 58(24): 10817-10827, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832598

RESUMO

Direct photoreduction of FeIII is a widely recognized route for accelerating FeIII/FeII cycle in photo-Fenton chemistry. However, most of the wavelengths covering the full spectral range are insufficient to supply enough photon energy for the direct reduction process. Herein, the hitherto neglected mechanism of FeIII reduction that the FeIII indirect reduction pathway initiated by light energy-dependent reactivity variation and reactive excited state (ES) was explored. Evolution of excited-state FeIII species (*FeIII) resulting from metal-centered charge excitation (MCCE) of FeIII is experimentally verified using pulsed laser femtosecond transient absorption spectroscopy with UV-vis detection and theoretically verified by quantum chemical calculation. Intense photoinduced intravalence charge transition was observed at λ = 380 and 466 nm, revealing quartet 4MCCE and doublet 2MCCE and their exponential processes. Light energy-dependent variation of *FeIII reactivity was kinetically certified by fitting the apparent rate constant of the radical-chain sequence of photo-Fenton reactions. Covalency is found to compensate for the intravalence charge separation following photoexcitation of the metal center in the MCCE state of Fenton photosensitizer. The *FeIII is established as a model, demonstrating the intravalence hole delocalization in the ES can be leveraged for photo-Fenton reaction or other photocatalytic schemes based on electron transfer chemistry.


Assuntos
Ferro , Ferro/química , Oxirredução , Peróxido de Hidrogênio/química , Cinética
18.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893346

RESUMO

Photosensitizers cause oxidative damages in various biological systems under light. In this study, the method for analyzing photosensitizing activity of various dietary and medicinal sources was developed using 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (thiazolyl blue formazan; MTT-F) as a probe. Significant and quantitative decolorization of MTT-F was observed in the presence of photosensitizers used in this study under light but not under dark conditions. The decolorization of MTT-F occurred irradiation time-, light intensity-, and photosensitizer concentration-dependently. The decolorized MTT-F was reversibly reduced by living cells; the LC-MS/MS results indicated the formation of oxidized products with -1 m/z of base peak from MTT-F, suggesting that MTT-F decolorized by photosensitizers was its corresponding tetrazolium. The present results indicate that MTT-F is a reliable probe for the quantitative analysis of photosensitizing activities, and the MTT-F-based method can be an useful tool for screening and evaluating photosensitizing properties of various compounds used in many industrial purposes.


Assuntos
Formazans , Fármacos Fotossensibilizantes , Sais de Tetrazólio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Sais de Tetrazólio/química , Formazans/química , Espectrometria de Massas em Tandem/métodos , Tiazóis/química , Luz , Cromatografia Líquida/métodos , Corantes/química
19.
Angew Chem Int Ed Engl ; : e202408064, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853147

RESUMO

Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (F1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in F1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.

20.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857313

RESUMO

The quantum yield of reactive oxygen species is of central importance for the development of organic photosensitizers and photodynamic therapy (PDT). A common molecular design approach for optimizing organic photosensitizers involves the incorporation of heavy atoms into their backbones. However, this raises concerns regarding heightened dark cytotoxicity and a shortened triplet-state lifetime. Herein, we demonstrate a heavy-atom-free (HAF) photosensitizer design strategy founded on the singlet fission (SF) mechanism for cancer PDT. Through the "single-atom surgery" approach to deleting oxygen atoms in pyrazino[2,3-g]quinoxaline skeleton photosensitizers, photosensitizers PhPQ and TriPhPQ are produced with Huckel's aromaticity and Baird's aromaticity in the ground state and triplet state, respectively, enabling the generation of two triplet excitons through SF. The SF process endows photosensitizer PhPQ with an ultrahigh triplet-state quantum yield (186%) and an outstanding 1O2 quantum yield (177%). Notably, HAF photosensitizers PhPQ and TriPhPQ enhanced PDT efficacy and potentiated αPD-L1 immune check blockade therapy in vivo, which show their promise for translational oncology treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...