Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
BMC Plant Biol ; 24(1): 941, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385111

RESUMO

Rapeseed (Brassica napus L.) is a major oilseed crop in the middle and lower reaches of the Yangtze River in China. However, it is susceptible to waterlogging stress. This study aimed to investigate the physiological characteristics, cellular changes, and gene expression patterns of rapeseed under waterlogging stress, with the goal of providing a foundation for breeding waterlogging-tolerant rapeseed. The results revealed that waterlogging-tolerant rapeseed exhibited higher levels of soluble sugars and antioxidant enzyme activity, particularly in the roots. Conversely, waterlogging-sensitive rapeseed displayed greater changes in malondialdehyde, proline, and hydrogen peroxide levels. Cellular observations showed that after experiencing waterlogging stress, the intercellular space of rapeseed leaf cells expanded, leading to disintegration of mitochondria and chloroplasts. Moreover, the area of the root xylem increased, the number of vessels grew, and there were signs of mitochondrial disintegration and vacuole shrinkage, with more pronounced changes observed in waterlogging-sensitive rapeseed. Furthermore, significant differences were found in the transcription levels of genes related to anaerobic respiration and flavonoid biosynthesis, and different varieties demonstrated varied responses to waterlogging stress. In conclusion, there are differences in the response of different varieties to waterlogging stress at the levels of morphology, physiological characteristics, cell structure, and gene transcription. Waterlogging-tolerant rapeseed responds to waterlogging stress by regulating its antioxidant defense system. This study provides valuable insights for the development of waterlogging-tolerant rapeseed varieties.


Assuntos
Brassica napus , Estresse Fisiológico , Brassica napus/fisiologia , Brassica napus/genética , Brassica napus/metabolismo , Estresse Fisiológico/fisiologia , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , China , Antioxidantes/metabolismo
2.
Pest Manag Sci ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229825

RESUMO

BACKGROUND: Sclerotinia sclerotiorum, a pathogenic fungus of oilseed rape, poses a severe threat to the oilseed rapeseed industry. In this study, we evaluated the potential of the natural compound hinokitiol against S. sclerotiorum by determining its biological activity and physiological characteristics. RESULTS: Our results showed that hinokitiol strongly inhibited the hyphae expansion of S. sclerotiorum, and its effective concentration of hyphae growing inhibition by 50% (EC50) against 103 S. sclerotiorum strains varied from 0.36 to 3.45 µg/mL, with an average of 1.23 µg/mL. Hinokitiol possessed better protective efficacy than therapeutic effects, and it exhibited no cross-resistance between carbendazim. After treatment with hinokitiol, many vesicular protrusions developed on the mycelium with rough surface and thickened cell wall. Moreover, the cell membrane permeability and glycerol content increased, while the oxalic acid declined after hinokitiol treatment. In addition, hinokitiol induced membrane lipid peroxidation and improved the production of reactive oxygen species (ROS) in S. sclerotiorum. Importantly, real-time quantitative polymerase chain reaction showed that cell wall and ROS synthesis-related genes were significantly up-regulated after hinokitiol treatment. CONCLUSION: This study revealed that hinokitiol has good biological activity against S. sclerotiorum and could be considered as an alternative bio-fungicide for the resistance management in controlling sclerotinia stem rot infected by S. sclerotiorum. These investigations provided new insights into understanding the toxic action of hinokitiol against pathogenic fungi. © 2024 Society of Chemical Industry.

3.
PeerJ ; 12: e17927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39210917

RESUMO

Melatonin regulates defense responses in plants under environmental stress. This study aimed to explore the impact of exogenous melatonin on the phenotype and physiology of 'BM1' pumpkin seedlings subjected to waterlogging stress. Waterlogging stress was induced following foliar spraying of melatonin at various concentrations (CK, 0, 10, 100, 200, and 300 µmol·L-1). The growth parameters, malondialdehyde (MDA) content, antioxidant enzyme activity, osmoregulatory substance levels, and other physiological indicators were assessed to elucidate the physiological mechanisms underlying the role of exogenous melatonin in mitigating waterlogging stress in pumpkin seedlings. The results indicate that pumpkin seedlings exhibit waterlogging symptoms, such as leaf wilting, water loss, edge chlorosis, and fading, under waterlogging stress conditions. Various growth indicators of the seedlings, including plant height, stem diameter, root length, fresh and dry weight, and leaf chlorophyll content, were significantly reduced. Moreover, the MDA content in leaves and roots increased significantly, along with elevated activities of superoxide dismutase, catalase, peroxidase, and soluble protein contents. When different concentrations of melatonin were sprayed on the leaves post waterlogging stress treatment, pumpkin seedlings showed varying degrees of recovery, with the 100 µmol·L-1 treatment displaying the best growth status and plant morphological phenotypes. There were no significant differences compared to the control group. Seedling growth indicators, chlorophyll content, root activity, antioxidant enzyme activities, soluble protein content, and osmotic adjustment substance content all increased to varying degrees with increasing melatonin concentration, peaking at 100 µmol·L-1. Melatonin also reduced membrane damage caused by oxidative stress and alleviated osmotic imbalance. Exogenous melatonin enhanced the activities of antioxidant enzymes and systems involved in scavenging reactive oxygen species, with 100 µmol·L-1 as the optimal concentration. These findings underscore the crucial role of exogenous melatonin in alleviating waterlogging stress in pumpkins. The findings of this study offer a theoretical framework and technical assistance for cultivating waterlogging-resistant pumpkins in practical settings. Additionally, it establishes a theoretical groundwork for the molecular breeding of pumpkins with increased tolerance to waterlogging.


Assuntos
Antioxidantes , Cucurbita , Melatonina , Plântula , Estresse Fisiológico , Melatonina/farmacologia , Melatonina/administração & dosagem , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cucurbita/efeitos dos fármacos , Cucurbita/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Água/metabolismo
4.
Biofouling ; 40(9): 549-562, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39212051

RESUMO

This case study aimed to isolate and identify methanogenic bacteria from landfill soil, mud, and leachate samples to assess their role in anaerobic digestion and biogas production. Anaerobic digestion involves the breakdown of organic matter by a diverse group of bacteria under oxygen-free conditions, resulting in the production of methane and carbon dioxide. The collected samples from the landfill were cultured in a modified mineral salt medium (MSM). Microscopic observations revealed distinct coccus and bacillus morphologies of the isolated methanogenic bacteria. Gas production experiments and substrate utilization studies identified two types of methanogens. Methanosarcina sp., which utilized acetate and methanol for methane production, and Methanobacterium sp., utilizing hydrogen and carbon dioxide, as well as acetate. Scanning electron microscope (SEM) analysis confirmed the different morphotypes of the isolated methanogens. The study findings demonstrated the presence of diverse methanogens in the landfill environment, contributing to anaerobic digestion and biogas production.


Assuntos
Biocombustíveis , Metano , Instalações de Eliminação de Resíduos , Metano/metabolismo , Metano/biossíntese , Anaerobiose , Methanosarcina/metabolismo , Methanobacterium/metabolismo , Microbiologia do Solo , Dióxido de Carbono/metabolismo
5.
BMC Plant Biol ; 24(1): 671, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004702

RESUMO

BACKGROUND: Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions. RESULTS: The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in H2O2 (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars. CONCLUSIONS: Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.


Assuntos
Brassinosteroides , Cicer , Desidratação , Melatonina , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Cicer/efeitos dos fármacos , Cicer/fisiologia , Cicer/genética , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Melatonina/farmacologia , Esteroides Heterocíclicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sinergismo Farmacológico , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
6.
Plant Physiol Biochem ; 214: 108906, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986237

RESUMO

The impact of drought events on the growth and yield of wheat plants has been extensively reported; however, limited information is available on the changes in physiological characteristics and their effects on the growth and water productivity of wheat after repeated drought stimuli. Moreover, whether appropriate drought stimulus can improve stress resistance in plants by improving physiological traits remains to be explored. Thus, in this study, a pot experiment was conducted to investigate the effects of intermittent and persistent mild [65%-75% soil water-holding capacity (SWHC)], moderate (55%-65% SWHC), and severe drought (45%-55% SWHC) stress on the growth, physiological characteristics, yield, and water-use efficiency (WUE) of winter wheat. After the second stress stimulus, persistent severe drought stress resulted in 30.98%, 234.62%, 53.80%, and 31.00% reduction in leaf relative water content, leaf water potential, photosynthetic rate (Pn), and indole-3-acetic acid content (IAA), respectively, compared to the control plants. However, abscisic acid content, antioxidant enzyme activities, and osmoregulatory substance contents increased significantly under drought stress, especially under persistent drought stress. After the second rehydration stimulus (ASRR), the actual and maximum efficiency of PSII and leaf water status in the plants exposed to intermittent moderate drought (IS2) stress were restored to the control levels, resulting in Pn being 102.56% of the control values; instantaneous WUE of the plants exposed to persistent severe drought stress was 1.79 times that of the control plants. In addition, the activities of superoxide dismutase, peroxidase, catalase, and glutathione reductase, as well as the content of proline, under persistent mild drought stress increased by 52.98%, 33.47%, 51.95%, 52.35%, and 17.07% at ASRR, respectively, compared to the control plants, which provided continuous antioxidant protection to wheat plants. This was also demonstrated by the lower H2O2 and MDA contents after rehydration. At ASRR, the IAA content in the IS2 and persistent moderate drought treatments increased by 36.23% and 19.61%, respectively, compared to the control plants, which favored increased aboveground dry mass and plant height. Compared to the control plants, IS2 significantly increased wheat yield, WUE for grain yield, and WUE for biomass, by 10.15%, 32.94%, and 33.16%, respectively. Collectively, IS2 increased grain growth, yield, and WUE, which could be mainly attributed to improved physiological characteristics after drought-stimulated rehydration.


Assuntos
Secas , Triticum , Água , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água/metabolismo , Estresse Fisiológico , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Fotossíntese/fisiologia , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo
7.
Plants (Basel) ; 13(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38999680

RESUMO

Soil salinization has become one of the major problems that threaten the ecological environment. The aim of this study is to explore the mechanism of salt tolerance of hybrid walnuts (Juglans major × Juglans regia) under long-term salt stress through the dynamic changes of growth, physiological and biochemical characteristics, and anatomical structure. Our findings indicate that (1) salt stress inhibited seedling height and ground diameter increase, and (2) with increasing salt concentration, relative water content (RWC) decreased, and proline (Pro) and soluble sugar (SS) content increased. The Pro content reached a maximum of 549.64 µg/g on the 42nd day. The increase in superoxide dismutase (SOD) activity (46.80-117.16%), ascorbate peroxidase (APX) activity, total flavonoid content (TFC), and total phenol content (TPC) under salt stress reduced the accumulation of malondialdehyde (MDA). (3) Increasing salt concentration led to increases and subsequent decreases in the thickness of palisade tissues, spongy tissues, leaves, and leaf vascular bundle diameter. Upper and lower skin thickness, root periderm thickness, root diameter, root cortex thickness, and root vascular bundle diameter showed different patterns of change at varying stress concentrations and durations. Overall, the study concluded that salt stress enhanced the antireactive oxygen system, increased levels of osmotic regulators, and low salt concentrations promoted leaf and root anatomy, but that under long-term exposure to high salt levels, leaf anatomy was severely damaged. For the first time, this study combined the anatomical structure of the vegetative organ of hybrid walnut with physiology and biochemistry, which is of great significance for addressing the challenge of walnut salt stress and expanding the planting area.

8.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000075

RESUMO

Iron (Fe) toxicity is a major issue adversely affecting rice production worldwide. Unfortunately, the physiological and genetic mechanisms underlying Fe toxicity tolerance in rice remain relatively unknown. In this study, we conducted a genome-wide association study using a diverse panel consisting of 551 rice accessions to identify genetic mechanisms and candidate genes associated with Fe toxicity tolerance. Of the 29 quantitative trait loci (QTL) for Fe toxicity tolerance detected on chromosomes 1, 2, 5, and 12, five (qSH_Fe5, qSFW_Fe2.3, qRRL5.1, qRSFW1.1, and qRSFW12) were selected to identify candidate genes according to haplotype and bioinformatics analyses. The following five genes were revealed as promising candidates: LOC_Os05g40160, LOC_Os05g40180, LOC_Os12g36890, LOC_Os12g36900, and LOC_Os12g36940. The physiological characteristics of rice accessions with contrasting Fe toxicity tolerance reflected the importance of reactive oxygen species-scavenging antioxidant enzymes and Fe homeostasis for mitigating the negative effects of Fe toxicity on rice. Our findings have clarified the genetic and physiological mechanisms underlying Fe toxicity tolerance in rice. Furthermore, we identified valuable genetic resources for future functional analyses and the development of Fe toxicity-tolerant rice varieties via marker-assisted selection.


Assuntos
Haplótipos , Ferro , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/efeitos dos fármacos , Ferro/metabolismo , Ferro/toxicidade , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Polimorfismo de Nucleotídeo Único
9.
Huan Jing Ke Xue ; 45(6): 3649-3660, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897784

RESUMO

This research aimed to clarify the effects of exogenously applied chitosan on the physiological characteristics, antioxidant activities, and Cd accumulation of wheat (Triticum aestivum L.) seedlings under cadmium (Cd) stress and to identify the key indicators based on the partial least squares model. The wheat variety studied was Bainong207 (BN207), and Cd-stress was achieved by growing seedlings in a hydroponic culture experiment with 10 and 25 µmol·L-1 Cd2+ added to the culture solution. It was found that both Cd-stress at 10 and 25 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Cd-stress. The Cd-stress also increased H2O2 and MDA accumulation and the degree of cell membrane lipid peroxidation and affected the activities of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD). Under Cd stress, exogenous chitosan decreased the Cd content in the aboveground and underground parts of wheat by 13.22 %-21.63 % and 7.92 %-28.32 % and reduced Cd accumulation in the aboveground and underground parts by 5.37 %-6.71 % and 1.91 %-4.09 %, respectively. Whereas exogenous chitosan application significantly reduced the content of H2O2 in roots and aboveground parts of wheat by 38.21 %-47.46 % and 45.81 %-55.73 % and MDA content by 37.65 %-48.12 % and 29.87 %-32.51 %, it increased the activities of SOD and POD in roots by 2.78 %-5.61 % and 13.81 %-18.33 %, respectively. In summary, exogenous chitosan can improve the photosynthetic characteristics and antioxidant enzyme activities of wheat seedlings under Cd stress, reduce the content and accumulation of Cd in the root and aboveground parts of wheat, and alleviate the damage of lipid peroxidation to the cell membrane. All of these results provide the basal data for the application of exogenous chitosan to alleviate Cd toxicity to wheat seedlings.


Assuntos
Antioxidantes , Cádmio , Quitosana , Plântula , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Quitosana/metabolismo , Quitosana/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
10.
Plants (Basel) ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931020

RESUMO

Pinus yunnanensis is an important component of China's economic development and forest ecosystems. The growth of P. yunnanensis seedlings experienced a slow growth phase, which led to a long seedling cultivation period. However, asexual reproduction can ensure the stable inheritance of the superior traits of the mother tree and also shorten the breeding cycle. The quantity and quality of branching significantly impact the cutting reproduction of P. yunnanensis, and a shaded environment affects lateral branching growth, development, and photosynthesis. Nonetheless, the physiological characteristics and the level of the transcriptome that underlie the growth of lateral branches of P. yunnanensis under shade conditions are still unclear. In our experiment, we subjected annual P. yunnanensis seedlings to varying shade intensities (0%, 25%, 50%, 75%) and studied the effects of shading on growth, physiological and biochemical changes, and gene expression in branching. Results from this study show that shading reduces biomass production by inhibiting the branching ability of P. yunnanensis seedlings. Due to the regulatory and protective roles of osmotically active substances against environmental stress, the contents of soluble sugars, soluble proteins, photosynthetic pigments, and enzyme activities exhibit varying responses to different shading treatments. Under shading treatment, the contents of phytohormones were altered. Additionally, genes associated with phytohormone signaling and photosynthetic pathways exhibited differential expression. This study established a theoretical foundation for shading regulation of P. yunnanensis lateral branch growth and provides scientific evidence for the management of cutting orchards.

11.
Biosci Rep ; 44(6)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38828664

RESUMO

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.


Assuntos
Antioxidantes , Cádmio , Chenopodium quinoa , Peróxido de Hidrogênio , Plântula , Ácido gama-Aminobutírico , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Cádmio/metabolismo , Cádmio/toxicidade , Chenopodium quinoa/metabolismo , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
12.
Plants (Basel) ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891369

RESUMO

Sufficient soil moisture is required to ensure the successful transplantation of sweet potato seedlings. Thus, reasonable water management is essential for achieving high quality and yield in sweet potato production. We conducted field experiments in northern China, planted on 18 May and harvested on 18 October 2021, at the Nancun Experimental Base of Qingdao Agricultural University. Three water management treatments were tested for sweet potato seedlings after transplanting: hole irrigation (W1), optimized drip irrigation (W2), and traditional drip irrigation (W3). The variation characteristics of soil volumetric water content, soil temperature, and soil CO2 concentration in the root zone were monitored in situ for 0-50 days. The agronomy, root morphology, photosynthetic parameters, 13C accumulation, yield, and yield components of sweet potato were determined. The results showed that soil VWC was maintained at 22-25% and 27-32% in the hole irrigation and combined drip irrigation treatments, respectively, from 0 to 30 days after transplanting. However, there was no significant difference between the traditional (W3) and optimized (W2) drip irrigation systems. From 30 to 50 days after transplanting, the VWC decreased significantly in all treatments, with significant differences among all treatments. Soil CO2 concentrations were positively correlated with VWC from 0 to 30 days after transplanting but gradually increased from 30 to 50 days, with significant differences among treatments. Soil temperature varied with fluctuations in air temperature, with no significant differences among treatments. Sweet potato survival rates were significantly lower in the hole irrigation treatments than in the drip irrigation treatments, with no significant difference between W2 and W3. The aboveground biomass, photosynthetic parameters, and leaf area index were significantly higher under drip irrigation than under hole irrigation, and values were higher in W3 than in W2. However, the total root length, root volume, and 13C partitioning rate were higher in W2 than in W3. These findings suggest that excessive drip irrigation can lead to an imbalance in sweet potato reservoir sources. Compared with W1, the W2 and W3 treatments exhibited significant yield increases of 42.98% and 36.49%, respectively. The W2 treatment had the lowest sweet potato deformity rate.

13.
Plants (Basel) ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794398

RESUMO

Exogenous selenium application could effectively improve the selenium absorption of crops affected by different climatic conditions due to changes in the planting environment and planting conditions. We planted maize at planting densities of 67,500 plants ha-1 (D1) and 75,000 plants ha-1 (D2). Five selenium fertilizer gradients of 0 mg m-2 (Se0), 7.5 mg m-2 (Se1), 15.0 mg m-2 (Se2), 22.5 mg m-2 (Se3), and 30.0 mg m-2 (Se4) were applied to investigate the response of the plants to selenium fertilizer application in terms of the gradient selenium absorption and substance accumulation. With the increase in the amount of selenium fertilizer applied, more of the selenium fertilizer will be absorbed and transported from the leaves to the grains, and the selenium content of the grains will gradually increase and exceed the selenium content of leaves. Under the D2 density in 2022, the selenium content of the grains under Se1, Se2, Se3, and Se4 treatments increased by 65.67%, 72.71%, and 250.53%, respectively, compared with that of Se0. A total of 260.55% of the plants showed a gradient of grain > leaf > cob > stalk from the Se2 treatment, and the overall selenium content of the plants increased first and then decreased. Under the D1 density, compared with the Se0, the dry matter mass of the Se1, Se2, Se3, and Se4 treatments significantly improved by 5.84%, 1.49%, and 14.26% in 2021, and significantly improved by 4.84%, 3.50%, and 2.85% in 2022. The 1000-grain weight under Se2, Se3, and Se4 treatments improved by 8.57%, 9.06%, and 15.56% compared to that under the Se0 treatment, and the yield per ha under the Se2, Se3, and Se4 treatments was 18.58%, 9.09%, and 21.42% higher than that under Se0 treatment, respectively. In addition, a reasonable combination of selenium application rate and density could improve the chlorophyll content and stem growth of dryland maize. This lays a foundation for the efficient application of selenium fertilizer and provides an important reference.

14.
Anim Sci J ; 95(1): e13954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797605

RESUMO

This study investigated the physiological characteristics and carcass performance associated with residual methane emissions (RME), and the effects of bull differences on CH4-related traits in Japanese Black cattle. Enteric methane (CH4) emissions from 156 Japanese Black cattle (111 heifers and 45 steers) were measured during early fattening using the sniffer method. Various physiological parameters were investigated to clarify the physiological traits between the high, middle, and low RME groups. CH4-related traits were examined to determine whether bull differences affected progeny CH4 emissions. Ruminal butyrate and NH3 concentrations were significantly higher in the high-RME group than in the low-RME group, whereas the propionate content was significantly higher in the low-RME group. Blood urea nitrogen, ß-hydroxybutyric acid, and insulin concentrations were significantly higher, and blood amino acids were lower in the high-RME group than in the other groups. No significant differences were observed in the carcass traits and beef fat composition between RME groups. CH4-related traits were significantly different among bull herds. Our results show that CH4-related traits are heritable, wherein bull differences affect progeny CH4 production capability, and that the above-mentioned rumen fermentations and blood metabolites could be used to evaluate enteric methanogenesis in Japanese Black cattle.


Assuntos
Butiratos , Metano , Rúmen , Animais , Metano/metabolismo , Bovinos/metabolismo , Bovinos/fisiologia , Masculino , Rúmen/metabolismo , Feminino , Butiratos/metabolismo , Amônia/metabolismo , Amônia/sangue , Amônia/análise , Fermentação , Ácido 3-Hidroxibutírico/sangue , Propionatos/metabolismo , Nitrogênio da Ureia Sanguínea , Insulina/sangue , Insulina/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1802-1808, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812192

RESUMO

The effects of humic acid water-soluble fertilizer on the growth and physiological characteristics of Bupleurum chinense seedlings(Zhongchai No.1) were studied by using a single factor experiment design. When the seedling age was 60 days, the humic acid water-soluble fertilizer was diluted 1 200 times(T1), 1 500 times(T2), 1 800 times(T3), and 2 100 times(T4) for seedling treatment, respectively, and water was used as the control(CK). The effects of different treatments on growth indexes, biomass accumulation, root activity, antioxidant enzyme activity, membrane lipid peroxidation, and photosynthetic characteristics of B. chinense seedlings were analyzed after 30 days. The results showed that compared with CK, stem height, leaf number, root diameter, and root length of the B. chinense seedlings under T3 treatment were significantly increased by 36.82%, 37.03%, 42.78%, and 22.38%, respectively. Root fresh weight, leaf fresh weight, root dry weight, and leaf dry weight under T3 treatment were significantly increased by 90.36%, 98.68%, 123.84%, and 104.38%, respectively. In addition, humic acid water-soluble fertilizer also enhanced TTC reducing activity of the root of B. chinense seedlings, inhibited malonaldehyde(MDA) content, increased superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) enzyme activities, improved chlorophyll content, and enhanced P_n, G_s, T_r, and other photosynthetic parameters. In conclusion, the application of humic acid water-soluble fertilizer diluted 1 800 times can significantly promote the growth of B. chinense seedlings, enhance root vitality, improve seedling stress resistance, and enhance photosynthesis. The results of this study can provide a theoretical basis for fertilization of B. chinense seedlings.


Assuntos
Bupleurum , Fertilizantes , Substâncias Húmicas , Raízes de Plantas , Plântula , Substâncias Húmicas/análise , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Fertilizantes/análise , Bupleurum/crescimento & desenvolvimento , Bupleurum/química , Bupleurum/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Fotossíntese/efeitos dos fármacos , Água/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Solubilidade , Superóxido Dismutase/metabolismo
16.
J Cosmet Dermatol ; 23(8): 2676-2680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38590116

RESUMO

BACKGROUND: The human lip vermilion, also known as the red lip, is important to the quality of life and has long attracted the attention of cosmetic researchers. However, there is limited existing literature on the physiological characteristics and age-related alterations in the human vermilion. OBJECTIVE: We aim to provide an overview of the physiological characteristics and age-related alterations in the human vermilion. METHODS: This article is a result of previous research. We conducted a literature search using various academic databases such as Google Scholar, Web of Science, and PubMed. Our findings provided a comprehensive understanding of the physiological characteristics and age-related changes of the human lip vermilion. RESULTS: The human lip vermilion has a unique structure and physiological characteristics, and during the aging process, a few changes may occur in the human lip vermilion. CONCLUSION: Understanding the human lip vermilion's physiological characteristics and age-related changes can provide key information for the future innovation of lip vermilion care products. Further investigations are necessary to reach a consensus on the physiological characteristics and age-related alterations in the human vermilion.


Assuntos
Envelhecimento , Lábio , Humanos , Lábio/fisiologia , Envelhecimento/fisiologia , Fatores Etários , Qualidade de Vida
17.
Open Life Sci ; 19(1): 20220835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585630

RESUMO

We grew three yellow Camellia species (the calcifuge C. nitidissima and C. tunghinensis, and the calcicole C. pubipetala) in acidic and calcareous soils for 7 months and assessed their photosynthetic physiological characteristics, growth performance, and element concentrations in this developmental context. The calcifuge C. nitidissima and C. tunghinensis species exhibited poor growth with leaf chlorosis, growth stagnation, and root disintegration in calcareous soils, and with their P n, G s, T r, F v/F m, ΦPSII, ETR, qP, leaf Chla, Chlb, and Chl(a + b) concentrations, and root, stem, leaf, and total biomass being significantly lower when grown in calcareous soils relative to in acidic soils. In contrast, the calcicole C. pubipetala grew well in both acidic and calcareous soils, with few differences in the above parameters between these two soil substrates. The absorption and/or transportation of nutrient elements such as N, K, Ca, Mg, and Fe by the two calcifuge Camellia species plants grown in calcareous soils were restrained. Soil type plays a major role in the failure of the two calcifuge Camellia species to establish themselves in calcareous soils, whereas other factors such as competition and human activity are likely more important limiting factors in the reverse case. This study furthers our understanding of the factors influencing the distribution of these rare and endangered yellow Camellia species, allowing for improved management of these species in conservation projects and horticultural production.

18.
Huan Jing Ke Xue ; 45(2): 1141-1149, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471951

RESUMO

This research aimed to clarify the mitigative effect of exogenously applied rare earth element cerium (Ce) on the growth, zinc (Zn) accumulation, and physiological characteristics of wheat (Triticum aestivum L.) seedlings under Zn stress. The wheat variety studied was Bainong307 (BN307), and Zn stress was achieved by growing seedlings in a hydroponic culture experiment with 500 µmol·L-1 Zn2 + added to the culture solution. It was found that Zn stress at 500 µmol·L-1 significantly inhibited the chlorophyll content, photosynthesis, and biomass accumulation of wheat seedlings. Seedling roots became shorter and thicker, and the lateral roots decreased under Zn stress. The Zn stress also increased MDA accumulation and the degree of cell membrane lipid peroxidation and reduced soluble protein contents and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). On the contrary, exogenous Ce decreased the adsorption and transport of Zn by the root system and alleviated the damage of Zn stress to wheat seedlings. Specifically, the increase in chlorophyll content (chlorophyll a, chlorophyll b, and total chlorophyll) and photosynthetic parameters, the enhancement of antioxidant enzymes activities and soluble protein levels, and the reduction in MDA content and the damage of lipid peroxidation to the cell membrane were all driven by exogenous Ce, which ultimately led to the increase in dry matter biomass of the root system and shoot. In summary, these results provide basic data for the application of exogenous Ce to alleviate Zn toxicity to plants.


Assuntos
Cério , Zinco , Zinco/metabolismo , Antioxidantes/metabolismo , Plântula , Triticum , Cério/metabolismo , Cério/farmacologia , Clorofila A , Superóxido Dismutase/metabolismo , Clorofila , Estresse Oxidativo
19.
Fungal Biol ; 128(1): 1616-1625, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341267

RESUMO

Auricularia cornea is an important edible mushroom crop in China but the occurrence of cobweb disease has cause significance economic loss in its production. The rate of disease occurrence is 16.65% all over the country. In the present study, a new pathogen Hypomyces cornea sp. nov. was found to cause the cobweb disease. In July 2021, three strains of fungal pathogen were isolated from infected fruiting bodies and identified as H. cornea based on morphological studies and molecular phylogenetic analysis of internal transcribed spacer (ITS) of nuclear ribosomal DNA, mitochondrial large subunit (LSU) of rRNA and the partial translation elongation factor 1-alpha genes. The representative isolates of the pathogenic Hypomyces species used to perform pathogenicity test with spore suspension that caused similar symptoms as those observed in the cultivated field, and same pathogens could be re-isolated, which fulfill Koch's postulates. The typical biological characterization was examined of the serious pathogen to determine its favorable growth conditions, including suitable temperature, pH, carbon, nitrogen sources and light conditions. The findings revealed an optimum temperature of 25 °C, pH of 6, and soluble starch and peptone as the preferred carbon and nitrogen sources, respectively. The hyphal growth inhibition method was used for primary in vitro screening test of seven common fungicides, and the most suitable fungicide is Prochloraz manganese chloride complex, the EC50 values of cobweb pathogen and mushrooms were 0.085 µg/mL and 2.452 µg/mL, respectively. The results of our research provide an evidence-based basis for the effective prevention and treatment of A. cornea cobweb disease.


Assuntos
Agaricales , Auricularia , Fungicidas Industriais , Hypocreales , Filogenia , Fungicidas Industriais/farmacologia , Córnea , Carbono , Nitrogênio
20.
Plants (Basel) ; 13(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256770

RESUMO

In this paper, the effect of isosteviol on the physiological metabolism of Brassica napus seedlings under salt stress is explored. Brassica napus seeds (Qinyou 2) were used as materials, and the seeds were soaked in different concentrations of isosteviol under salt stress. The fresh weight, dry weight, osmotic substance, absorption and distribution of Na+, K+, Cl-, and the content of reactive oxygen species (ROS) were measured, and these results were combined with the changes shown by Fourier transform infrared spectroscopy (FTIR). The results showed that isosteviol at an appropriate concentration could effectively increase the biomass and soluble protein content of Brassica napus seedlings and reduce the contents of proline, glycine betaine, and ROS in the seedlings. Isosteviol reduces the oxidative damage to Brassica napus seedlings caused by salt stress by regulating the production of osmotic substances and ROS. In addition, after seed soaking in isosteviol, the Na+ content in the shoots of the Brassica napus seedlings was always lower than that in the roots, while the opposite was true for the K+ content. This indicated that under salt stress the Na+ absorbed by the Brassica napus seedlings was mainly accumulated in the roots and that less Na+ was transported to the shoots, while more of the K+ absorbed by the Brassica napus seedlings was retained in the leaves. It is speculated that this may be an important mechanism for Brassica napus seedlings to relieve Na+ toxicity. The spectroscopy analysis showed that, compared with the control group (T1), salt stress increased the absorbance values of carbohydrates, proteins, lipids, nucleic acids, etc., indicating structural damage to the plasma membrane and cell wall. The spectra of the isosteviol seed soaking treatment group were nearly the same as those of the control group (T1). The correlation analysis shows that under salt stress the Brassica napus seedling tissues could absorb large amounts of Na+ and Cl- to induce oxidative stress and inhibit the growth of the plants. After the seed soaking treatment, isosteviol could significantly reduce the absorption of Na+ by the seedling tissues, increase the K+ content, and reduce the salt stress damage to the plant seedlings. Therefore, under salt stress, seed soaking with isosteviol at an appropriate concentration (10-9~10-8 M) can increase the salt resistance of Brassica napus seedlings by regulating their physiological and metabolic functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA