Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
J Clin Pharmacol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973651

RESUMO

As detailed information on the pharmacokinetics (PK) of labetalol in pregnant people are lacking, the aims of this study were: (1) to build a physiologically based PK (PBPK) model of labetalol in non-pregnant individuals that incorporates different CYP2C19 genotypes (specifically, *1/*1, *1/*2 or *3, *2/*2, and *17/*17); (2) to translate this model to the second and third trimester of pregnancy; and (3) to combine the model with a previously published direct pharmacodynamic (PD) model to predict the blood pressure lowering effect of labetalol in the third trimester. Clinical data for model evaluation was obtained from the scientific literature. In non-pregnant populations, the mean ratios of simulated versus observed peak concentration (Cmax), time to reach Cmax (Tmax), and exposure (area under the plasma concentration-time curve, AUC) were 0.94, 0.82, and 1.16, respectively. The pregnancy PBPK model captured the observed PK adequately, but clearance was slightly underestimated with mean ratios of simulated versus observed Cmax, Tmax, and AUC of 1.28, 1.30, and 1.39, respectively. The results suggested that pregnant people with CYP2C19 *2/*2 alleles have similar labetalol exposure and trough levels compared to non-pregnant controls, whereas those with other alleles were found to have increased exposure and trough concentrations. Importantly, the pregnancy PBPK/PD model predicted that, despite increased exposure in some genotypes, the blood pressure lowering effect was broadly comparable across all genotypes. In view of the large inter-individual variability and the potentially increasing blood pressure during pregnancy, patients may need to be closely monitored for achieving optimal therapeutic effects and avoiding adverse events.

2.
Eur J Pharm Sci ; : 106839, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906231

RESUMO

Tacrolimus (FK506) is a cornerstone of GVHD-prophylaxis treatment in paediatrics undergoing haematopoietic stem cell transplantation (HSCT). However, due to concerns about highly inter/intra-individual variability, precision dosing of FK506 is crucial. Cytochrome P450(CYP) 3A4 and 3A5 are considered important sources of FK506 pharmacokinetic variability. Nevertheless, the impact of age-related maturation in hepatic and intestinal CYP3A4/3A5 enzymes remains unknown in paediatric HSCT patients. Physiologically-based pharmacokinetic (PBPK) models were developed and verified in adult volunteers and adult HSCT patients using GastroPlusTM (version 9.0), and then extrapolated to paediatric HSCT patients, taking into account the maturation of CYP3A4 and CYP3A5. Default CYP3A4 and CYP3A5 ontogeny profiles were updated based on the latest reports. The paediatric PBPK model was evaluated with independent data collected from Sun Yat-sen Memorial Hospital (86 paediatric HSCT patients, 1 to 16 -year-old). Simulations were performed to evaluate a reported FK506 dosing regimen in infants and children with different CYP3A5 genotypes. Extensive PBPK model validation indicated good predictability, with the predicted/observed (P/O) ratios within the range of 0.80-fold to 1.25-fold. Blood tacrolimus concentration-time curves were comparable between the real and virtual patients. Simulations showed that the higher levels of tacrolimus in 9-month-old to 3-year-old infants were mainly attributed to the CYP3A4/3A5 ontogeny profiles, which resulted in lower clearance and higher exposure relative to dose. The oral dosage of 0.1 mg/kg/day (q12 h) is considered appropriate for paediatric HSCT patients 9 months to 15 years of age with CYP3A5 *1/*1 genotypes. Lower doses were required for paediatric HSCT patients with CYP3A5 *1/*3 (0.08 mg/kg/day, q12h) or CYP3A5 *3/*3 genotypes (0.07 mg/kg/day, q12h), and analyses demonstrated 12.5%-20% decreases in ≤3-year-old patients. The study highlights the feasibility of PBPK modelling to explore age-related enzyme maturation in infants and children(≤3-year-old) undergoing HSCT and emphasizes the need to include hepatic and gut CYP3A4/3A5 maturation parameters.

3.
J Clin Pharmacol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898531

RESUMO

Uridine 5'-diphospho-glucuronosyltransferases (UGTs) demonstrate variable expression in the pediatric population. Thus, understanding of age-dependent maturation of UGTs is critical for accurate pediatric pharmacokinetics (PK) prediction of drugs that are susceptible for glucuronidation. Ontogeny functions of major UGTs have been previously developed and reported. However, those ontogeny functions are based on in vitro data (i.e., enzyme abundance, in vitro substrate activity, and so on) and therefore, may not translate to in vivo maturation of UGTs in the clinical setting. This report describes meta-analysis of the literature to develop and compare ontogeny functions for 8 primary UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, UGT2B7, UGT2B10, UGT2B15, and UGT2B17) based on published in vitro and in vivo studies. Once integrated with physiologically based pharmacokinetics modeling models, in vivo activity-based ontogeny functions demonstrated somewhat greater prediction accuracy (mean squared error, MSE: 0.05) compared to in vitro activity (MSE: 0.104) and in vitro abundance-based ontogeny functions (MSE: 0.129).

4.
Toxicol Sci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897660

RESUMO

Proarrhythmic cardiotoxicity remains a substantial barrier to drug development as well as a major global health challenge. In vitro human pluripotent stem cell-based new approach methodologies have been increasingly proposed and employed as alternatives to existing in vitro and in vivo models that do not accurately recapitulate human cardiac electrophysiology or cardiotoxicity risk. In this study, we expanded the capacity of our previously established three-dimensional human cardiac microtissue model to perform quantitative risk assessment by combining it with a physiologically based pharmacokinetic model, allowing a direct comparison of potentially harmful concentrations predicted in vitro to in vivo therapeutic levels. This approach enabled the measurement of concentration responses and margins of exposure for two physiologically relevant metrics of proarrhythmic risk (ie, action potential duration and triangulation assessed by optical mapping) across concentrations spanning three orders of magnitude. The combination of both metrics enabled accurate proarrhythmic risk assessment of four compounds with a range of known proarrhythmic risk profiles (ie, quinidine, cisapride, ranolazine, and verapamil) and demonstrated close agreement with their known clinical effects. Action potential triangulation was found to be a more sensitive metric for predicting proarrhythmic risk associated with the primary mechanism of concern for pharmaceutical-induced fatal ventricular arrhythmias, delayed cardiac repolarization due to inhibition of the rapid delayed rectifier potassium channel, or hERG channel. This study advances human induced pluripotent stem cell-based three-dimensional cardiac tissue models as new approach methodologies that enable in vitro proarrhythmic risk assessment with high precision of quantitative metrics for understanding clinically relevant cardiotoxicity.

5.
Br J Clin Pharmacol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926090

RESUMO

AIMS: The reference nutrient intake for vitamin D in people aged ≥4 years is 10 µg/day (400 IU/day) in the UK, but the recommended daily allowance is 15 µg/day (600 IU/day) for people aged 1-70 years in the USA. Here, we aim to compare the 25-hydroxyvitamin D (25(OH)D) serum concentration profiles between the 2 doses. METHODS: With world-wide trial data of adults aged ≥18 years, 45-93 kg, we constructed a minimal physiologically based pharmacokinetics model of serum concentrations of vitamin D and 25(OH)D using nonlinear mixed effects modelling. We used this model to forecast the mean, 2.5th and 97.5th percentiles for serum 25(OH)D concentrations in British adults aged ≥16 years. RESULTS: Our final model used bodyweight to adjust volume of each compartment and maximum clearance of 25(OH)D. No other covariate was identified. The model accurately predicted independent data from trials of a broad range of dosing regimens. We simulated British adults and showed that circulating 25(OH)D concentrations in 95% of people taking 10 µg/day for a year is predicted to reach 50 nmol/L in 32 weeks, while 97.5% of those on 15 µg/day were predicted to attain this threshold within 28 weeks. CONCLUSION: Both doses are efficacious in >95% of the British population. The daily dose of 15 µg can help 97.5% of the British adults achieve 50 nmol/L serum 25(OH)D and reach the 25 nmol/L threshold in 4 weeks.

6.
Br J Clin Pharmacol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627941

RESUMO

AIMS: Pre-emptive prediction to avoid myelosuppression and harmful sequelae is difficult given the complex interplay among patients, drugs and treatment protocols. This study aimed to model plasma and bone marrow concentrations and the likelihood of myelotoxicity following administration of 5-fluorouracil (5-FU) by diverse intravenous (IV) bolus or continuous infusion (cIF) regimens. METHODS: Using physicochemical, in vitro and clinical data obtained from the literature consisting of various regimens and patient cohorts, a 5-FU physiologically based pharmacokinetic (PBPK) model was developed. The predicted and observed PK values were compared to assess model performance prior to examining myelotoxicity potential of IV bolus vs. cIF and DPYD wild type vs. genetic variant. RESULTS: The established model was verified by utilizing 5-FU concentration-time profiles of adequate heterogeneity contributed by 36 regimens from 15 studies. The study provided corroborative evidence to explain why cIF (vs. IV bolus) had lower myelotoxicity risk despite much higher total doses. The PBPK model was used to estimate the optimal dosage in patients heterozygous for the DPYD c.1905 + 1G > A allele and suggested that a dose reduction of at least 25% was needed (compared to the dose in wild-type subjects). CONCLUSION: A verified PBPK model was used to explain the lower myelotoxicity risk of cIF vs. IV bolus administration of 5-FU and to estimate the dose reduction needed in carriers of a DPYD variant. With appropriate data, expertise and resources, PBPK models have many potential uses in precision medicine application of oncology drugs.

7.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38600804

RESUMO

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Assuntos
Biofarmácia , Indústria Farmacêutica , Humanos , Biofarmácia/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Equivalência Terapêutica , Preparações Farmacêuticas/química , Estados Unidos
8.
Mol Ther Nucleic Acids ; 35(2): 102175, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38576454

RESUMO

RNA therapeutics are an emerging, powerful class of drugs with potential applications in a wide range of disorders. A central challenge in their development is the lack of clear pharmacokinetic (PK)-pharmacodynamic relationship, in part due to the significant delay between the kinetics of RNA delivery and the onset of pharmacologic response. To bridge this gap, we have developed a physiologically based PK/pharmacodynamic model for systemically administered mRNA-containing lipid nanoparticles (LNPs) in mice. This model accounts for the physiologic determinants of mRNA delivery, active targeting in the vasculature, and differential transgene expression based on nanoparticle coating. The model was able to well-characterize the blood and tissue PKs of LNPs, as well as the kinetics of tissue luciferase expression measured by ex vivo activity in organ homogenates and bioluminescence imaging in intact organs. The predictive capabilities of the model were validated using a formulation targeted to intercellular adhesion molecule-1 and the model predicted nanoparticle delivery and luciferase expression within a 2-fold error for all organs. This modeling platform represents an initial strategy that can be expanded upon and utilized to predict the in vivo behavior of RNA-containing LNPs developed for an array of conditions and across species.

9.
Front Pharmacol ; 15: 1356273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515840

RESUMO

Dabigatran etexilate (DABE) is a clinical probe substrate for studying drug-drug interaction (DDI) through an intestinal P-glycoprotein (P-gp). A recent in vitro study, however, has suggested a potentially significant involvement of CYP3A-mediated oxidative metabolism of DABE and its intermediate monoester BIBR0951 in DDI following microdose administration of DABE. In this study, the relative significance of CYP3A- and P-gp-mediated pathways to the overall disposition of DABE has been explored using mechanistic physiologically based pharmacokinetic (PBPK) modeling approach. The developed PBPK model linked DABE with its 2 intermediate (BIBR0951 and BIBR1087) and active (dabigatran, DAB) metabolites, and with all relevant drug-specific properties known to date included. The model was successfully qualified against several datasets of DABE single/multiple dose pharmacokinetics and DDIs with CYP3A/P-gp inhibitors. Simulations using the qualified model supported that the intestinal CYP3A-mediated oxidation of BIBR0951, and not the gut P-gp-mediated efflux of DABE, was a key contributing factor to an observed difference in the DDI magnitude following the micro-versus therapeutic doses of DABE with clarithromycin. Both the saturable CYP3A-mediated metabolism of BIBR0951 and the solubility-limited DABE absorption contributed to the relatively modest nonlinearity in DAB exposure observed with increasing doses of DABE. Furthermore, the results suggested a limited role of the gut P-gp, but an appreciable, albeit small, contribution of gut CYP3A in mediating the DDIs following the therapeutic dose of DABE with dual CYP3A/P-gp inhibitors. Thus, a possibility exists for a varying extent of CYP3A involvement when using DABE as a clinical probe in the DDI assessment, across DABE dose levels.

10.
Br J Clin Pharmacol ; 90(6): 1428-1449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450818

RESUMO

AIMS: The current work describes the development of mechanistic vaginal absorption and metabolism model within Simcyp Simulator to predict systemic concentrations following vaginal application of ring and gel formulations. METHODS: Vaginal and cervix physiology parameters were incorporated in the model development. The study highlights the model assumptions including simulation results comparing systemic concentrations of 5 different compounds, namely, dapivirine, tenofovir, lidocaine, ethinylestradiol and etonogestrel, administered as vaginal ring or gel. Due to lack of data, the vaginal absorption parameters were calculated based on assumptions or optimized. The model uses release rate/in vitro release profiles with formulation characteristics to predict drug mass transfer across vaginal tissue into the systemic circulation. RESULTS: For lidocaine and tenofovir vaginal gel, the predicted to observed AUC0-t and Cmax ratios were well within 2-fold error limits. The average fold error (AFE) and absolute AFE indicating bias and precision of predictions range from 0.62 to 1.61. For dapivirine, the pharmacokinetic parameters are under and overpredicted in some studies due to lack of formulation composition details and relevance of release rate used in ring model. The predicted to observed AUC0-t and Cmax ratios were well within 2-fold error limits for etonogestrel and ethinylestradiol vaginal ring (AFEs and absolute AFEs from 0.84 to 1.83). CONCLUSION: The current study provides first of its kind physiologically based pharmacokinetic framework integrating physiology, population and formulation data to carry out in silico mechanistic vaginal absorption studies, with the potential for virtual bioequivalence assessment in the future.


Assuntos
Simulação por Computador , Dispositivos Anticoncepcionais Femininos , Modelos Biológicos , Tenofovir , Vagina , Absorção Vaginal , Cremes, Espumas e Géis Vaginais , Feminino , Humanos , Cremes, Espumas e Géis Vaginais/administração & dosagem , Cremes, Espumas e Géis Vaginais/farmacocinética , Tenofovir/farmacocinética , Tenofovir/administração & dosagem , Vagina/metabolismo , Vagina/efeitos dos fármacos , Administração Intravaginal , Etinilestradiol/farmacocinética , Etinilestradiol/administração & dosagem , Desogestrel/administração & dosagem , Desogestrel/farmacocinética , Pirimidinas/farmacocinética , Pirimidinas/administração & dosagem , Adulto , Área Sob a Curva , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/administração & dosagem
11.
Clin Ther ; 46(3): 258-266, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369451

RESUMO

PURPOSE: Lacosamide (LCM) is a new-generation anti-seizure medication that is efficacious in patients with focal seizures with or without secondary generalization. Until now, the efficacy, safety, and tolerability of LCM are still lacking in Chinese epilepsy patients, particularly for pediatric populations and patients with renal or hepatic impairment. METHODS: This study was conducted to develop a physiologically based pharmacokinetic (PBPK) model to characterize the pharmacokinetics of LCM in Chinese populations and predict the pharmacokinetics of LCM in Chinese pediatric populations and patients with renal or hepatic impairment. Using data from clinical investigations, the developed PBPK model was validated by comparing predicted and observed blood concentration data. FINDINGS: Doses should be reduced to approximately 82%, 75%, 63%, and 76% of the Chinese healthy adult dose in patients with mild, moderate, and severe renal impairment and end-stage renal disease; and approximately 89%, 72%, and 36% of the Chinese healthy adult dose in patients with Child Pugh-A, B, and C hepatic impairment. For pediatric populations, intravenous doses should be adjusted to 1.75 mg/kg for newborns, 2.5 mg/kg for toddlers, 2.2 mg/kg mg for preschool and school age, and 2 mg/kg mg for adolescents to achieve an equivalent plasma exposure of 2 mg/kg LCM in adults. The oral doses should be adjusted to 20 mg for toddlers, 32 mg for preschool, 45 mg for school age, and 95 mg for adolescents to achieve an approximately equivalent plasma exposure of 100 mg LCM in adults. IMPLICATIONS: The PBPK model of LCM can be utilized to optimize dosage regimens for special populations.


Assuntos
Epilepsia , Hepatopatias , Insuficiência Renal , Adulto , Pré-Escolar , Adolescente , Humanos , Criança , Recém-Nascido , Idoso de 80 Anos ou mais , Lacosamida/uso terapêutico , Epilepsia/tratamento farmacológico , Insuficiência Renal/tratamento farmacológico , Hepatopatias/diagnóstico , Coleta de Dados , Anticonvulsivantes/efeitos adversos
12.
Eur J Pharm Sci ; 194: 106697, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199444

RESUMO

The concomitant administration of ritonavir and oxycodone may significantly increase the plasma concentrations of oxycodone. This study was aimed to simulate DDI between ritonavir and oxycodone, a widely used opioid, and to formulate dosing protocols for oxycodone by using physiologically based pharmacokinetic (PBPK) modeling. We developed a ritonavir PBPK model incorporating induction and competitive and time-dependent inhibition of CYP3A4 and competitive inhibition of CYP2D6. The ritonavir model was evaluated with observed clinical pharmacokinetic data and validated for its CYP3A4 inhibition potency. We then used the model to simulate drug interactions between oxycodone and ritonavir under various dosing scenarios. The developed model captured the pharmacokinetic characteristics of ritonavir from clinical studies. The model also accurately predicts exposure changes of midazolam, triazolam, and oxycodone in the presence of ritonavir. According to model simulations, the steady-state maximum, minimum and average concentrations of oxycodone increased by up to 166% after co-administration with ritonavir, and the total exposure increased by approximately 120%. To achieve similar steady-state concentrations, halving the dose with an unchanged dosing interval or doubling the dosing interval with an unaltered single dose should be practical for oxycodone, whether formulated in uncoated or controlled-release tablets during long-term co-medication with ritonavir. The results revealed exposure-related risks of oxycodone-ritonavir interactions that have not been studied clinically and emphasized PBPK as a workable method to direct judicious dosage.


Assuntos
Oxicodona , Ritonavir , Ritonavir/farmacocinética , Oxicodona/farmacocinética , Citocromo P-450 CYP3A , Midazolam/farmacocinética , Interações Medicamentosas , Modelos Biológicos
13.
AAPS J ; 26(1): 12, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177638

RESUMO

Evidence shows that there is an increasing use of modeling and simulation to support product development and approval for complex generic drug products in the USA, which includes the use of mechanistic modeling and model-integrated evidence (MIE). The potential for model reuse was the subject of a workshop session summarized in this review, where the session included presentations and a panel discussion from members of the U.S. Food and Drug Administration (FDA), academia, and the generic drug product industry. Concepts such as platform performance assessment and MIE standardization were introduced to provide potential frameworks for model reuse related to mechanistic models and MIE, respectively. The capability of models to capture formulation and product differences was explored, and challenges with model validation were addressed for drug product classes including topical, orally inhaled, ophthalmic, and long-acting injectable drug products. An emphasis was placed on the need for communication between FDA and the generic drug industry to continue to foster maturation of modeling and simulation that may support complex generic drug product development and approval, via meetings and published guidance from FDA. The workshop session provided a snapshot of the current state of modeling and simulation for complex generic drug products and offered opportunities to explore the use of such models across multiple drug products.


Assuntos
Medicamentos Genéricos , Estados Unidos , Equivalência Terapêutica , Preparações Farmacêuticas , Simulação por Computador , United States Food and Drug Administration
14.
Pharmaceutics ; 16(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276498

RESUMO

This commentary further reflects on the paper of De Sutter et al. on predicting volume of distribution in neonates, and the performance of physiologically based pharmacokinetic models We hereby stressed the add on value to collaborate on real world data to further close this knowledge gap. We illustrated this by weight distribution characteristics in breastfed (physiology) and in asphyxiated (pathophysiology), with additional reflection on their kidney and liver function.

15.
J Pharm Sci ; 113(1): 95-117, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279835

RESUMO

The classical organ clearance models have been proposed to relate the plasma clearance CLp to probable mechanism(s) of hepatic clearance. However, the classical models assume the intrinsic capability of drug elimination (CLu,int) that is physically segregated from the vascular blood but directly acts upon the unbound drug concentration in the blood (fubCavg), and do not handle the transit-time delay between the inlet/outlet concentrations in their closed-form clearance equations. Therefore, we propose unified model structures that can address the internal blood concentration patterns of clearance organs in a more mechanistic/physiological manner, based on the fractional distribution parameter fd operative in PBPK. The basic partial/ordinary differential equations for four classical models are revisited/modified to yield a more complete set of extended clearance models, i.e., the Rattle, Sieve, Tube, and Jar models, which are the counterparts of the dispersion, series-compartment, parallel-tube, and well-stirred models. We demonstrate the feasibility of applying the resulting extended models to isolated perfused rat liver data for 11 compounds and an example dataset for in vitro-in vivo extrapolation of the intrinsic to the systemic clearances. Based on their feasibilities to handle such real data, these models may serve as an improved basis for applying clearance models in the future.


Assuntos
Fígado , Modelos Biológicos , Ratos , Animais , Taxa de Depuração Metabólica , Fígado/metabolismo , Cinética , Farmacocinética
16.
Transplant Cell Ther ; 30(3): 332.e1-332.e15, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081414

RESUMO

Therapeutic drug monitoring (TDM) of busulfan (Bu) is well-established in pediatric hematopoietic stem cell transplantation (HSCT), but its use in adults is limited due to a lack of clear recommendations and scarcity of evidence regarding its utility. GSTA1 promoter variants are reported to affect Bu clearance in both adults and pediatric patients. This study aimed to evaluate the value of preemptive genotyping GSTA1 and body composition (obesity) in individualizing Bu dosing in adults, through pharmacokinetic (PK) modeling and simulations. A population pharmacokinetic (PopPK) model was developed and validated with data from 60 adults who underwent HSCT. Simulations assessed different dosing scenarios based on body size metrics and GSTA1 genotypes. Due to the limited number of obese patients in the cohort, the effect of obesity on Bu pharmacokinetics (PK) was evaluated in silico using a physiologically-based pharmacokinetic (PBPK) model and relevant virtual populations from Simcyp software. Patients with at least 1 GSTA1*B haplotype had 17% lower clearance on average. PopPK simulations indicated that adjusting doses based on genotype increased the probability of achieving the target exposure (3.7 to 5.5 mg.h/L) from 53% to 60 % in GSTA1*A homozygous patients, and from 50% to 61% in *B carriers. Still, Approximately 40% of patients would not achieve this therapeutic window without TDM. A 2-sample optimal design was validated for routine model-based Bu first dose AUC0-∞ estimation, and the model was implemented in the Tucuxi user-friendly TDM software. PBPK simulations confirmed body surface area-based doses of 29 to 31 mg/m2/6h as the most appropriate, regardless of obesity status. This study emphasizes the importance of individualized Bu dosing strategies in adults to achieve therapeutic targets. Preemptive genotyping alone may not have a significant clinical impact, and routine TDM may be necessary for optimal transplantation outcomes.


Assuntos
Bussulfano , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Criança , Bussulfano/uso terapêutico , Farmacogenética , Monitoramento de Medicamentos , Obesidade
18.
J Clin Pharmacol ; 64(3): 323-333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909674

RESUMO

Nilotinib is a second-generation BCR-ABL tyrosine kinase inhibitor for the treatment of Philadelphia chromosome-positive chronic myeloid leukemia in both adult and pediatric patients. The pharmacokinetics (PK) of nilotinib in specific populations such as pregnant and lactating people remain poorly understood. Therefore, the objectives of the current study were to develop a physiologically based pharmacokinetic (PBPK) model to predict nilotinib PK in virtual drug-drug interaction (DDI) studies, as well as in pediatric, pregnant, and lactating populations. The nilotinib PBPK model was built in PK-Sim, which is part of the free and open-source software Open Systems Pharmacology. The observed clinical data for the validation of the nilotinib models were obtained from the literature. The model reasonably predicted nilotinib concentrations in the adult population; the DDIs between nilotinib and rifampin or ketoconazole in the adult population; and the PK in the pediatric, pregnant, and lactating populations, although in the latter 2 populations plasma concentrations were slightly underestimated. The ratio of predicted versus observed PK parameters for the adult model ranged from 0.71 to 1.11 for area under the concentration-time curve and 0.55 to 0.95 for maximum concentration. For the DDI, the predicted area under the concentration-time curve ratio and maximum concentration ratio fell within the Guest criterion. The current study demonstrated the utility of using PBPK modeling to understand the mechanistic basis of PK differences between adults and specific populations, such as pediatrics, and pregnant and lactating individuals, indicating that this technology can potentially inform or optimize dosing conditions in specific populations.


Assuntos
Lactação , Modelos Biológicos , Adulto , Feminino , Gravidez , Humanos , Criança , Simulação por Computador , Interações Medicamentosas , Pirimidinas
19.
J Pharm Sci ; 113(1): 118-130, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634869

RESUMO

In-vitro models are available in the literature for predicting the volume of distribution at steady-state (Vdss) of drugs. The mechanistic model refers to the tissue composition-based model (TCM), which includes important factors that govern Vdss such as drug physiochemistry and physiological data. The recognized TCM published by Rodgers and Rowland (TCM-RR) and a subsequent adjustment made by Simulations Plus Inc. (TCM-SP) have been shown to be generally less accurate with neutral compared to ionized drugs. Therefore, improving these models for neutral drugs becomes necessary. The objective of this study was to propose a new TCM for improving the prediction of Vdss for neutral drugs. The new TCM included two modifications of the published models (i) accentuate the effect of the blood-to-plasma ratio (BPR) that should cover permeated molecules across the biomembranes, which is lacking in these models for neutral compounds, and (ii) use a different approach to estimate the binding in tissues. The new TCM was validated with a large dataset of 202 commercial and proprietary compounds including preclinical and clinical data. All scenario datasets were predicted more accurately with the TCM-New, whereas all statistical parameters indicate that the TCM-New showed significant improvements in terms of accuracy over the TCM-RR and TCM-SP. Predictions of Vdss were frequently more accurate for the TCM-new with 83% within twofold error versus only 50% for the TCM-RR. And more than 95% of the predictions were within threefold error and patient interindividual differences can be predicted with the TCM-New, greatly exceeding the accuracy of the published models. Overall, the new TCM incorporating BPR significantly improved the Vdss predictions in animals and humans for neutral drugs, and, hence, has the potential to better support the drug discovery and facilitate the first-in-human predictions.


Assuntos
Descoberta de Drogas , Modelos Biológicos , Animais , Humanos , Especificidade da Espécie , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica , Preparações Farmacêuticas , Farmacocinética
20.
Eur J Clin Pharmacol ; 80(2): 261-271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38099940

RESUMO

BACKGROUND: Apixaban is a factor Xa inhibitor with a limited therapeutic index that belongs to the family of oral direct anticoagulants. The pharmacokinetic (PK) behavior of apixaban may be altered in elderly populations and populations with renal or hepatic impairment, necessitating dosage adjustments. METHODS: This study was conducted to examine how the physiologically based pharmacokinetic (PBPK) model describes the PKs of apixaban in adult and elderly populations and to determine the PKs of apixaban in elderly populations with renal and hepatic impairment. After PBPK models were constructed using the reported physicochemical properties of apixaban and clinical data, they were validated using data from clinical studies involving various dose ranges. Comparing predicted and observed blood concentration data and PK parameters was utilized to evaluate the model's fit performance. RESULTS: Doses should be reduced to approximately 70% of the healthy adult population for the healthy elderly population to achieve the same PK exposure; approximately 88%, 71%, and 89% of that for the elderly populations with mild, moderate, and severe renal impairment, respectively; and approximately 96%, 81%, and 58% of that for the Child Pugh-A, Child Pugh-B, and Child Pugh-C hepatic impairment elderly populations, respectively to achieve the same PK exposure. CONCLUSION: The findings indicate that the renal and hepatic function might be considered for apixaban therapy in Chinese elderly patients and the PBPK model can be used to optimize dosage regimens for specific populations.


Assuntos
Hepatopatias , Pirazóis , Insuficiência Renal , Adulto , Humanos , Idoso , Piridonas , Anticoagulantes , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...