RESUMO
Volatile organic compounds (VOCs) data in conjunction with other inorganic pollutants, surface meteorological data and continuous measurement of the Planetary Boundary Layer height (PBLH) at an urban site in Mexico City were performed from 6 to 18 March 2016. Positive Matrix Factorization (PMF) identified four emission source factors of VOCs along with equivalent black carbon (eBC), gaseous pollutants (CO, NO, NO2, SO2, NH3) and ions (Na+, Mg2+, Ca2+, NO3-, NH4+): (1) secondary aerosol precursors, (2) evaporation and non-LPG fuel combustion, (3) geogenic source and (4) vehicle exhaust. Propylene Equivalent and Maximum Incremental Reactivity (MIR) methods identified isoprene and ethylene as the highest oxidant and O3 forming species. Pollutant data normalized to the variation of the PBLH revealed continued production of O3 precursors in the afternoon beyond the typical morning rush hour. In particular this could be observed during the second part of the measurement period (12-15 March) when a strong O3 episode occurred under weak wind and lower PBLH conditions compared to the preceding period (6-11 March) when well mixed conditions due to elevated daytime PBLH and strong advection led to overall reduced pollutant mixing ratios in the afternoon hours.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Meteorologia , México , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , ChinaRESUMO
Fine particulate matter (PM2.5) is dangerous to human health. At midnight on 31 December, in Ecuadorian cities, people burn puppets and fireworks, emitting high amounts of PM2.5. On 1 January 2022, concentrations between 27.3 and 40.6 µg m-3 (maximum mean over 24 h) were measured in Cuenca, an Andean city located in southern Ecuador; these are higher than 15 µg m-3, the current World Health Organization guideline. We estimated the corresponding PM2.5 emissions and used them as an input to the Weather Research and Forecasting with Chemistry (WRF-Chem 3.2) model to simulate the change in PM2.5 concentrations, assuming these emissions started at 18:00 LT or 21:00 LT on 31 December 2021. On average, PM2.5 concentrations decreased by 51.4% and 33.2%. Similar modeling exercises were completed for 2016 to 2021, providing mean decreases between 21.4% and 61.0% if emissions started at 18:00 LT. Lower mean reductions, between 2.3% and 40.7%, or even local increases, were computed for emissions beginning at 21:00 LT. Reductions occurred through better atmospheric conditions to disperse PM2.5 compared to midnight. Advancing the burning time can help reduce the health effects of PM2.5 emissions on 31 December.
RESUMO
In this study, the erosion of the nocturnal boundary layer (NBL) was analyzed in the central Amazon during the dry season of 2014, using data from the GoAmazon 2014/5 Project and high-resolution model outputs (PArallelized Les Model - PALM). The dataset consisted of in situ (radiosonde) and remote sensing instruments measurements (Ceilometer, Lidar, Wind Profiler, microwave radiometer, and SODAR). The results showed that the NBL erosion occurred, on average, two hours after sunrise (06:00 local time), and the sensible heat flux provided more than 50% of the sensible heating necessary for the erosion process to occur. After the erosion, the convective phase developed quickly (175.2 m h-1). The measurements of the remote sensors showed that the Ceilometer, in general, presented satisfactory results in relation to the radiosondes for measuring the height of the planetary boundary layer. The PALM simulations represented well the NBL erosion, with a small underestimation (≈ 20 m) at the beginning of this phase. In the final phase of NBL erosion and in the initial stage of the development of the convective boundary layer (CBL), the model presented satisfactory results, with heights of CBL ranging from 800 m to 1,650 m, respectively. (AU)
Assuntos
Erosão , Ecossistema Amazônico , Estação SecaRESUMO
In this study, the erosion of the nocturnal boundary layer (NBL) was analyzed in the central Amazon during the dry season of 2014, using data from the GoAmazon 2014/5 Project and high-resolution model outputs (PArallelized Les Model - PALM). The dataset consisted of in situ (radiosonde) and remote sensing instruments measurements (Ceilometer, Lidar, Wind Profiler, microwave radiometer, and SODAR). The results showed that the NBL erosion occurred, on average, two hours after sunrise (06:00 local time), and the sensible heat flux provided more than 50% of the sensible heating necessary for the erosion process to occur. After the erosion, the convective phase developed quickly (175.2 m h-1). The measurements of the remote sensors showed that the Ceilometer, in general, presented satisfactory results in relation to the radiosondes for measuring the height of the planetary boundary layer. The PALM simulations represented well the NBL erosion, with a small underestimation ( 20 m) at the beginning of this phase. In the final phase of NBL erosion and in the initial stage of the development of the convective boundary layer (CBL), the model presented satisfactory results, with heights of CBL ranging from 800 m to 1,650 m, respectively.(AU)
Este estudo teve como objetivo analisar a erosão da camada limite noturna (CLN) na Amazônia central durante a estação seca de 2014, usando dados do Projeto GoAmazon 2014/5 e saídas do modelo de alta resolução (PArallelized Les Model - PALM). O conjunto de dados consistiu de medidas por instrumentos in situ (radiossonda) e sensoriamento remoto (Ceilometer, Lidar, Wind Profiler, radiômetro de microondas e SODAR). Os resultados mostraram que a erosão da CLN ocorreu, em média, duas horas após o nascer do sol (06:00 hora local), e o fluxo de calor sensível forneceu mais de 50% do aquecimento necessário para o processo de erosão ocorrer. Após a erosão, a fase convectiva se desenvolveu rapidamente (175,2 m h-1). As medidas dos sensores remotos mostraram que o Ceilometer, em geral, apresentou resultados satisfatórios em relação às radiossondas para medidas da altura da camada limite planetária. As simulações PALM representaram bem a erosão da CLN, com uma pequena subestimação ( 20 m) no início desta fase. Na fase final da erosão da CLN e no estágio inicial do desenvolvimento da camada limite convectiva (CLC), o modelo apresentou resultados satisfatórios, com alturas variando de 800 m a 1.650 m, respectivamente.(AU)