RESUMO
Cucurbita ficifolia is a squash grown from Mexico to Bolivia. Its ancestor is unknown, but it has limited compatibility with wild xerophytic Cucurbita from Mexico's highlands. We assembled the reference genome of C. ficifolia and assessed the genetic diversity and historical demography of the crop in Mexico with 2524 nuclear single nucleotide polymorphisms (SNPs). We also evaluated the gene flow between C. ficifolia and xerophytic taxa with 6292 nuclear and 440 plastome SNPs from 142 individuals sampled in 58 sites across their area of sympatry. Demographic modelling of C. ficifolia supports an eight-fold decrease in effective population size at about 2409 generations ago (95% CI = 464-12,393), whereas plastome SNPs support the expansion of maternal lineages ca. 1906-3635 years ago. Our results suggest a recent spread of C. ficifolia in Mexico, with high genetic diversity (π = 0.225, FST = 0.074) and inbreeding (FIS = 0.233). Coalescent models suggest low rates of gene flow with C. radicans and C. pedatifolia, whereas ABBA-BABA tests did not detect significant gene flow with wild taxa. Despite the ecogeographic proximity of C. ficifolia and its relatives, this crop persists as a highly isolated lineage of puzzling origin.
RESUMO
BACKGROUND: Plant domestication is a remarkable example of rapid phenotypic transformation of polygenic traits, such as organ size. Evidence from a handful of study cases suggests this transformation is due to gene regulatory changes that result in non-additive phenotypes. Employing data from published genetic crosses, we estimated the role of non-additive gene action in the modulation of transcriptional landscapes in three domesticated plants: maize, sunflower, and chili pepper. Using A. thaliana, we assessed the correlation between gene regulatory network (GRN) connectivity properties, transcript abundance variation, and gene action. Finally, we investigated the propagation of non-additive gene action in GRNs. RESULTS: We compared crosses between domesticated plants and their wild relatives to a set of control crosses that included a pair of subspecies evolving under natural selection and a set of inbred lines evolving under domestication. We found abundance differences on a higher portion of transcripts in crosses between domesticated-wild plants relative to the control crosses. These transcripts showed non-additive gene action more often in crosses of domesticated-wild plants than in our control crosses. This pattern was strong for genes associated with cell cycle and cell fate determination, which control organ size. We found weak but significant negative correlations between the number of targets of trans-acting genes (Out-degree) and both the magnitude of transcript abundance difference a well as the absolute degree of dominance. Likewise, we found that the number of regulators that control a gene's expression (In-degree) is weakly but negatively correlated with the magnitude of transcript abundance differences. We observed that dominant-recessive gene action is highly propagable through GRNs. Finally, we found that transgressive gene action is driven by trans-acting regulators showing additive gene action. CONCLUSIONS: Our study highlights the role of non-additive gene action on modulating domestication-related traits, such as organ size via regulatory divergence. We propose that GRNs are shaped by regulatory changes at genes with modest connectivity, which reduces the effects of antagonistic pleiotropy. Finally, we provide empirical evidence of the propagation of non-additive gene action in GRNs, which suggests a transcriptional epistatic model for the control of polygenic traits, such as organ size.
RESUMO
The genus Manihot, with around 120 known species, is native to a wide range of habitats and regions in the tropical and subtropical Americas. Its high species richness and recent diversification only c. 6 million years ago have significantly complicated previous phylogenetic analyses. Several basic elements of Manihot evolutionary history therefore remain unresolved. Here, we conduct a comprehensive phylogenomic analysis of Manihot, focusing on exhaustive sampling of South American taxa. We find that two recently described species from northeast Brazil's Atlantic Forest were the earliest to diverge, strongly suggesting a South American common ancestor of Manihot. Ancestral state reconstruction indicates early Manihot diversification in dry forests, with numerous independent episodes of new habitat colonization, including into savannas and rainforests within South America. We identify the closest wild relatives to Manihot esculenta, including the crop cassava, and we quantify extensive wild introgression into the cassava gene pool from at least five wild species, including Manihot glaziovii, a species used widely in breeding programs. Finally, we show that this wild-to-crop introgression substantially shapes the mutation load in cassava. Our findings provide a detailed case study for neotropical evolutionary history in a diverse and widespread group, and a robust phylogenomic framework for future Manihot and cassava research.
Assuntos
Manihot , Evolução Biológica , Pool Gênico , Manihot/genética , Filogenia , América do SulRESUMO
Germination represents the culmination of the seed developmental program and is affected by the conditions prevailing during seed maturation in the mother plant. During maturation, the dormancy condition and tolerance to dehydration are established. These characteristics are modulated by the environment to which they are subjected, having an important impact on wild species. In this work, a review was made of the molecular bases of the maturation, the processes of dormancy imposition and loss, as well as the germination process in different wild species with different life histories, and from diverse habitats. It is also specified which of these species present a certain type of management. The impact that the domestication process has had on certain characteristics of the seed is discussed, as well as the importance of determining physiological stages based on morphological characteristics, to face the complexities of the study of these species and preserve their genetic diversity and physiological responses.
RESUMO
Greater susceptibility to herbivory can arise as an effect of crop domestication. One proposed explanation is that defenses decreased intentionally or unintentionally during the domestication process, but evidence for this remains elusive. An alternative but nonexclusive explanation is presumed selection for higher nutritional quality. We used a metaanalytical approach to examine susceptibility to herbivores in fruit and seed crops and their wild relatives. Our analyses provide novel insights into the mechanisms of increased susceptibility by evaluating whether it can be attributed to either a reduction in herbivore defensive traits, including direct/indirect and constitutive/inducible defenses, or an increase in the nutritional content of crops. The results confirm higher herbivory and lower levels of all types of defenses in crops compared to wild relatives, although indirect defenses were more affected than direct ones. Contrary to expectations, nutritional quality was lower in crops than in wild relatives, which may enhance biomass loss to herbivores if they increase consumption to meet nutritional requirements. Our findings represent an important advance in our understanding of how changes in defensive and nutritional traits following domestication could influence, in combination or individually, crop susceptibility to herbivore attacks.
Assuntos
Domesticação , Herbivoria , Frutas , Valor Nutritivo , SementesRESUMO
Pulque is one of the oldest fermented beverages, with its origins dating back to pre-Hispanic Mexico. Recently, public consumption has increased. However, the majority of Agave plantations for pulque production have disappeared or been abandoned in recent decades. To create strategies for the conservation and production of pulque agaves, it is necessary to first determine their taxonomic identities and to better understand their genetic and morphological diversity. Despite the historical importance of pulque in Mexico, little attention has been placed on the study of Agave plants used for its production. Therefore, we analyzed the morphological diversity of vegetative characters of nine landraces of two Agave species (A. salmiana and A. mapisaga) which are widely cultivated for pulque production in Tlaxcala, Mexico. The analysis of morphological characters showed that the landraces largely clustered based on classic taxonomic relationships. One cluster of landraces associated with Agave mapisaga var. mapisaga and another with A. salmiana subsp. salmiana, but with the exception of A. salmiana subsp. salmiana "Ayoteco", which is more closely related with A. mapisaga var. mapisaga. Additionally, we analyzed the genetic relationships between 14 landraces and wild individuals using molecular markers (trnL and ITS). The identified genetic variants or haplotypes and genetic pools mainly corresponded with the species. In the case of "Ayoteco", incongruence between markers was observed. Low selection intensity, genetic flow events, and the plasticity of morphological traits may explain the high number of landraces without clear differences in their morphological diversity (vegetative characters) or genetic pools. The use of reproductive traits and massive sequencing might be useful for identifying possible morphological and genetic changes in the Agave landraces used for pulque production.
RESUMO
Agaves resist extreme heat and drought. In A. tequilana var. azul, the central spike of the rosette -containing the shoot apical meristem and folded leaves in early stages of development- is remarkably heat tolerant. We found that the most abundant protein in this organ is a 27 kDa protein. This protein was named mayahuelin to honor Mayáhuel, the agave goddess in the Aztec pantheon. LC-MS/MS analyses identified mayahuelin as a type I RIP (Ribosome Inactivating Protein). In addition to the spike, mayahuelin was expressed in the peduncle and in seeds, whereas in mature leaves, anthers, filaments, pistils, and tepals was absent. Anti-mayahuelin antibody raised against the A. tequilana var. azul protein revealed strong signals in spike leaves of A. angustifolia, A. bracteosa, A. rhodacantha, and A. vilmoriniana, and moderate signals in A. isthmensis, A. kerchovei, A. striata ssp. falcata, and A. titanota, indicating conservation at the protein level throughout the Agave genus. As in charybdin, a type I RIP characterized in Drimia maritima, mayahuelin from A. tequilana var. azul contains a natural aa substitution (Y76D) in one out of four aa comprising the active site. The RIP gene family in A. tequilana var. azul consists of at least 12 genes and Mayahuelin is the only member encoding active site substitutions. Unlike canonical plant RIPs, expression of Mayahuelin gene in S. cerevisiae did not compromise growth. The inhibitory activity of the purified protein on a wheat germ in vitro translation system was moderate. Mayahuelin orthologs from other Agave species displayed one of six alleles at Y76: (Y/Y, D/D, S/S, Y/D, Y/S, D/S) and proved to be useful markers for phylogenetic analysis. Homozygous alleles were more frequent in wild accessions whereas heterozygous alleles were more frequent in cultivars. Mayahuelin sequences from different wild populations of A. angustifolia and A. rhodacantha allowed the identification of accessions closely related to azul, manso, sigüín, mano larga, and bermejo varieties of A. tequilana and var. espadín of A. angustifolia. Four A. rhodacantha accessions and A. angustifolia var. espadín were closer relatives of A. tequilana var. azul than A. angustifolia wild accessions or other A. tequilana varieties.
RESUMO
PREMISE OF THE STUDY: This investigation establishes the first DNA-sequence-based phylogenetic hypothesis of species relationships in the coca family (Erythroxylaceae) and presents its implications for the intrageneric taxonomy and neotropical biogeography of Erythroxylum. We also identify the closest wild relatives and evolutionary relationships of the cultivated coca taxa. METHODS: We focused our phylogenomic inference on the largest taxonomic section in the genus Erythroxylum (Archerythroxylum O.E.Schulz) using concatenation and gene tree reconciliation methods from hybridization-based target capture of 427 genes. KEY RESULTS: We show that neotropical Erythroxylum are monophyletic within the paleotropical lineages, yet Archerythroxylum and all of the other taxonomic sections from which we sampled multiple species lack monophyly. We mapped phytogeographic states onto the tree and found some concordance between these regions and clades. The wild species E. gracilipes and E. cataractarum are most closely related to the cultivated E. coca and E. novogranatense, but relationships within this "coca" clade remain equivocal. CONCLUSIONS: Our results point to the difficulty of morphology-based intrageneric classification in this clade and highlight the importance of integrative taxonomy in future systematic revisions. We can confidently identify E. gracilipes and E. cataractarum as the closest wild relatives of the coca taxa, but understanding the domestication history of this crop will require more thorough phylogeographic analysis.
Assuntos
Domesticação , Erythroxylaceae/genética , Filogenia , Filogeografia , América do SulRESUMO
Background: Strong artificial selection and/or natural bottle necks may limit genetic variation in domesticated species. Lupinus luteus, an orphan temperate crop, has suffered diversity reductions during its bitter/sweet alkaloid domestication history, limiting breeding efforts and making molecular marker development a difficult task. The main goal of this research was to generate new polymorphic insertiondeletion (InDel) markers to aid yellow lupin genetics and breeding. By combining genomic reduction libraries and next generation sequencing, several polymorphic InDel markers were developed for L. luteus L. Results: A total of 118 InDel in silico polymorphic markers were identified. Eighteen InDel primer sets were evaluated in a diverse L. luteus core collection, where amplified between 23 alleles per locus. Observed heterozygosity (HO; 0.0648 to 0.5564) and polymorphic information content (PIC; 0.06 to 0.48) estimations revealed a moderate level of genetic variation across L. luteus accessions. In addition, ten and nine InDel loci amplified successfully Lupinus hispanicus Boiss & Reut, and Lupinus mutabilis Sweet, respectively, two L. luteus close relatives. PCA analysis identified two L. luteus clusters, most likely explained by the domestication species history. Conclusion: The development of InDel markers will facilitate the study of genetic diversity across L. luteus populations, as well as among closely related species.
Assuntos
Variação Genética , Marcadores Genéticos , Lupinus/genética , Mutação INDEL , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Local people's perceptions of cultivated and wild agrobiodiversity, as well as their management of hybridization are still understudied in Amazonia. Here we analyze domesticated treegourd (Crescentia cujete), whose versatile fruits have technological, symbolic, and medicinal uses. A wild relative (C. amazonica) of the cultivated species grows spontaneously in Amazonian flooded forests. We demonstrated, using whole chloroplast sequences and nuclear microsatellites, that the two species are strongly differentiated. Nonetheless, they hybridize readily throughout Amazonia and the proportions of admixture correlate with fruit size variation of cultivated trees. New morphotypes arise from hybridization, which are recognized by people and named as local varieties. Small hybrid fruits are used to make the important symbolic rattle (maracá), suggesting that management of hybrid trees is an ancient human practice in Amazonia. Effective conservation of Amazonian agrobiodiversity needs to incorporate this interaction between wild and cultivated populations that is managed by smallholder families. Beyond treegourd, our study clearly shows that hybridization plays an important role in tree crop phenotypic diversification and that the integration of molecular analyses and farmers' perceptions of diversity help disentangle crop domestication history.
RESUMO
The data presented in this paper provide direct microbotanical evidence concerning the early use of potato (Solanum tuberosum) within its botanical locus of origin in the high south-central Andes. The data derive from Jiskairumoko, an early village site in the western Titicaca Basin dating to the Late Archaic to Early Formative periods (â¼3,400 cal y BC to 1,600 cal y BC). Because the site reflects the transition to sedentism and food production, these data may relate to potato domestication and early cultivation. Of 141 starch microremains recovered from 14 groundstone tools from Jiskairumoko, 50 are identified as consistent with cultivated or domesticated potato, based on reference to published materials and a study of wild and cultivated potato starch morphology. Along with macro- and microbotanical evidence for chenopod consumption and grinding tool data reflecting intensive use of this technology throughout site occupation, the microbotanical data reported here suggest the intensive exploitation, if not cultivation, of plant resources at Jiskairumoko. Elucidating the details of the trajectory of potato domestication is necessary for an overall understanding of the development of highland Andean agriculture, as this crop is central to the autochthonous agricultural suite. A paucity of direct botanical evidence, however, has hindered research efforts. The results of the modern and archaeological starch analyses presented here underscore the utility of this method in addressing questions related to the timing, mode, and context of potato origins.
Assuntos
Agricultura/história , Arqueologia , Produtos Agrícolas/história , Solanum tuberosum/história , Produtos Agrícolas/química , História Antiga , Humanos , Peru , Solanum tuberosum/química , Amido/químicaRESUMO
During the twentieth century, Amazonia was widely regarded as relatively pristine nature, little impacted by human history. This view remains popular despite mounting evidence of substantial human influence over millennial scales across the region. Here, we review the evidence of an anthropogenic Amazonia in response to claims of sparse populations across broad portions of the region. Amazonia was a major centre of crop domestication, with at least 83 native species containing populations domesticated to some degree. Plant domestication occurs in domesticated landscapes, including highly modified Amazonian dark earths (ADEs) associated with large settled populations and that may cover greater than 0.1% of the region. Populations and food production expanded rapidly within land management systems in the mid-Holocene, and complex societies expanded in resource-rich areas creating domesticated landscapes with profound impacts on local and regional ecology. ADE food production projections support estimates of at least eight million people in 1492. By this time, highly diverse regional systems had developed across Amazonia where subsistence resources were created with plant and landscape domestication, including earthworks. This review argues that the Amazonian anthrome was no less socio-culturally diverse or populous than other tropical forested areas of the world prior to European conquest.
Assuntos
Arqueologia , Ecossistema , Produtos Agrícolas/fisiologia , Humanos , Densidade Demográfica , América do SulRESUMO
The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18-24 cal ka B.P.) monsoon with similar δ(18)O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9-11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka.
Assuntos
Carbonato de Cálcio/química , Cavernas/química , Clima , Chuva , Movimentos da Água , Oceano Atlântico , Radioisótopos de Carbono/análise , História Antiga , Umidade , México , Isótopos de Oxigênio/análise , TemperaturaRESUMO
A evolução das plantas cultivadas, que teve início há cerca de 13.000 anos, está sujeita aos mesmos processos evolutivos naturais, aliada à ação do homem de forma consciente ou inconsciente, levando à domesticação. Nesta revisão, são apresentados os principais fatores evolutivos, tais como mutação, hibridação, migração, seleção e deriva genética, que, de alguma maneira, estão envolvidos com a origem, evolução e domesticação de plantas cultivadas. São apresentados também exemplos de como esses processos influenciaram na diversidade intra e interespecífica de plantas cultivadas, com o aparecimento de novas variedades ou mesmo de novas espécies. De modo geral, tais processos atuaram na ampliação, na manutenção, bem como na redução da variabilidade genética das plantas cultivadas.
The evolution of crop plants, which began at about 13,000 years ago, is subject to the same natural evolutionary processes, coupled with the action of man, consciously or unconsciously, leading to domestication. This review presents the main evolutionary factors such as mutation, hybridization, migration, selection and genetic drift, which somehow are involved in the origin, evolution and domestication of crop plants. Examples of how these processes influenced in the intra and interespecific diversity of crop plants, with the uprise of new varieties or even of new species, are also presented. In general, these processes have worked well in the increase, maintenance, as well as in the reduction of genetic diversity of crop plants.
RESUMO
The evolution of crop plants, which began at about 13,000 years ago, is subject to the same natural evolutionary processes, coupled with the action of man, consciously or unconsciously, leading to domestication. This review presents the main evolutionary factors such as mutation, hybridization, migration, selection and genetic drift, which somehow are involved in the origin, evolution and domestication of crop plants. Examples of how these processes influenced in the intra and interespecific diversity of crop plants, with the uprise of new varieties or even of new species, are also presented. In general, these processes have worked well in the increase, maintenance, as well as in the reduction of genetic diversity of crop plants.
A evolução das plantas cultivadas, que teve início há cerca de 13.000 anos, está sujeita aos mesmos processos evolutivos naturais, aliada à ação do homem de forma consciente ou inconsciente, levando à domesticação. Nesta revisão, são apresentados os principais fatores evolutivos, tais como mutação, hibridação, migração, seleção e deriva genética, que, de alguma maneira, estão envolvidos com a origem, evolução e domesticação de plantas cultivadas. São apresentados também exemplos de como esses processos influenciaram na diversidade intra e interespecífica de plantas cultivadas, com o aparecimento de novas variedades ou mesmo de novas espécies. De modo geral, tais processos atuaram na ampliação, na manutenção, bem como na redução da variabilidade genética das plantas cultivadas.
RESUMO
The evolution of crop plants, which began at about 13,000 years ago, is subject to the same natural evolutionary processes, coupled with the action of man, consciously or unconsciously, leading to domestication. This review presents the main evolutionary factors such as mutation, hybridization, migration, selection and genetic drift, which somehow are involved in the origin, evolution and domestication of crop plants. Examples of how these processes influenced in the intra and interespecific diversity of crop plants, with the uprise of new varieties or even of new species, are also presented. In general, these processes have worked well in the increase, maintenance, as well as in the reduction of genetic diversity of crop plants.
A evolução das plantas cultivadas, que teve início há cerca de 13.000 anos, está sujeita aos mesmos processos evolutivos naturais, aliada à ação do homem de forma consciente ou inconsciente, levando à domesticação. Nesta revisão, são apresentados os principais fatores evolutivos, tais como mutação, hibridação, migração, seleção e deriva genética, que, de alguma maneira, estão envolvidos com a origem, evolução e domesticação de plantas cultivadas. São apresentados também exemplos de como esses processos influenciaram na diversidade intra e interespecífica de plantas cultivadas, com o aparecimento de novas variedades ou mesmo de novas espécies. De modo geral, tais processos atuaram na ampliação, na manutenção, bem como na redução da variabilidade genética das plantas cultivadas.