Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39194843

RESUMO

Thermophilic fungi have been seldom studied despite the fact that they can contribute to understanding ecological mechanisms of adaptation in diverse environments and have attractive toolboxes with a wide range of biotechnological applications. This work describes for the first time an endophytic and thermophilic strain of Aspergillus brasiliensis that was isolated in the crater of the active volcano "El Chichonal" in Mexico. This strain was capable of surviving in soil with a temperature of 60 °C and a pH of neutral acidity, which preluded a high thermostability and a potential in industrial application. The complete genome of A. brasiliensis E_15.1 was sequenced and assembled in 37 Mb of genomic DNA. We performed a comprehensive phylogenomic analysis for the precise taxonomic identification of this species as a novel strain of Aspergillus brasiliensis. Likewise, the predicted coding sequences were classified according to various functions including Carbohydrate-Active Enzymes (CAZymes), biosynthetic gene clusters of secondary metabolites (BGCs), and metabolic pathways associated with plant growth promotion. A. brasiliensis E_15.1 was found to degrade chitin, chitooligosaccharides, xylan, and cellulose. The genes to biosynthesize clavaric acid (a triterpene with antitumor activity) were found, thus probably having antitumor activity. In addition to the genomic analysis, a set of enzymatic assays confirmed the thermostability of extracellular xylanases and cellulases of A. brasiliensis E_15.1. The enzymatic repertoire of A. brasiliensis E_15.1 suggests that A. brasiliensis E_15.1 has a high potential for industrial application due to its thermostability and can promote plant growth at high temperatures. Finally, this strain constitutes an interesting source of terpenoids with pharmacological activity.

2.
Front Plant Sci ; 12: 645542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936132

RESUMO

Drought stress is an important concern worldwide which reduces crop yield and quality. To alleviate this problem, Trichoderma asperellum has been used as a plant growth-promoting fungus capable of inducing plant tolerance to biotic and abiotic stresses. Here, we examined the effect of T. asperellum inoculation on sugarcane plant above and belowground development under drought stress and investigated the role of this fungus on inducing tolerance to drought at physiological and biochemical levels. The experiment was performed in pots under greenhouse conditions, with four treatments and four replicates. The treatments consisted of sugarcane plants inoculated or not with T. asperellum and grown under drought stress and adequate water availability. Drought-stressed sugarcane plants inoculated with T. asperellum changed the crop nutrition and chlorophyll and carotenoid concentrations, resulting in increased photosynthesis rate, stomatal conductance, and water use efficiency compared to the non-inoculated plants. In addition, the antioxidant metabolism also changed, increasing the superoxide dismutase and peroxidase enzyme activities, as well as the proline concentration and sugar portioning. These cascade effects enhanced the root and stalk development, demonstrating that T. asperellum inoculation is an important tool in alleviating the negative effects of drought stress in sugarcane. Future studies should be performed to elucidate if T. asperellum should be reapplied to the sugarcane ratoons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA