Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 246: 116204, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776584

RESUMO

Lamiophlomis Herba (LH) is a traditional Chinese and Tibetan dual-use herb with hemostatic and analgesic effects, and is widely used in the clinical treatment of traumatic bleeding and pain. In recent years, LH has been proven to treat liver fibrosis (LF), but the chemical components related to the pharmacological properties of LH in the treatment of LF are still unclear. Based on the theory of plasma pharmachemistry, the characteristic components in water extract and drug-containing plasma samples of LH were qualitatively analyzed by UPLC-Q-TOF-MS. The chemical components in plasma were screened and the targets were predicted by network pharmacology. Then, the predicted components and targets were verified in vitro by Elisa and qRT-PCR technology. Finally, the pharmacological effects of LH and its monomeric components were determined by hematoxylin-eosin staining of rat liver. A total of 50 chemical constituents were identified in LH, of which 12 were blood prototypes and 9 were metabolites. In vitro experiments showed that LH and its monomeric components luteolin, shanzhiside methyl ester, loganic acid, loganin, 8-O-acetyl shanzhiside methyl ester could increase the expression of antioxidant genes (NQO-1, HO-1) and decrease the expression of inflammatory genes (IL-6, IL-18), thereby reducing the expression of extracellular matrix-related genes and proteins (COL1A1, COL3A1, LN, α-sma, PC-III, Col-IV). In vivo experiments showed that LH could reduce the area of LF in rats in a dose-dependent manner, and shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester may be the main components in pharmacodynamics. These effects may be mediated by LH-mediated Nrf2/NF-κB pathway. This study explored the potential pharmacodynamic components of LH in the treatment of LF, and confirmed that shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester play a key role in the treatment of LF with LH.


Assuntos
Medicamentos de Ervas Chinesas , Cirrose Hepática , Farmacologia em Rede , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Farmacologia em Rede/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Cirrose Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Lamiaceae/química
2.
J Ethnopharmacol ; 325: 117869, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342153

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY: The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS: The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS: The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1ß, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1ß, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION: Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1ß, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Humanos , Animais , Ratos , Apigenina , Luteolina/farmacologia , Luteolina/uso terapêutico , Peróxido de Hidrogênio , Interleucina-6 , Ácido Linoleico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Quercetina , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Doença das Coronárias/tratamento farmacológico , Interleucina-1beta , Fenilalanina
3.
J Ethnopharmacol ; 319(Pt 3): 117318, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37838293

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chaihu Guizhi decoction (CGD) is a classic Traditional Chinese Medicine (TCM) prescription for the treatment of influenza and fever, composes of Bupleuri Radix (Chaihu), Cinnamomi Ramulus (Guizhi), Scutellariae Radix (Huangqin), Codonopsis Radix (Dangshen), Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle (Zhigancao), Pinelliae Rhizoma Praeparatum (Fabanxia), Zingiberis Rhizoma Recens (Shengjiang), Paeoniae Radix Alba (Baishao) and Jujubae Fructus (Dazao) in the ratio of 12:4.5:4.5:4.5:3:6:4.5:4.5:4. The efficacy of TCM, if there are differences, depends on the different extraction methods and extracted components. AIM OF THE STUDY: This study was to evaluate the anti-influenza virus effect of CGD extracts with different extraction methods, analyze the components and explore their correlation. MATERIALS AND METHODS: CGD were prepared with four extraction methods respectively, the traditional decoction (TD), two steps alcohol-water extraction (AWE), alcohol reflux extraction (AE) and water reflux extraction (WE). Based on the influenza mouse model, the efficacy of anti-influenza virus in vivo of the four CGD extracts were evaluated with the therapeutic index of body weight, rectal temperature, lung index, thymus index and lung viral load of mice. The chemical components in four CGD extracts, and compounds absorbed in rats blood with prototypes or metabolites were identified by UPLC-Q-Exactive/MS. The partial least squares (PLS) method was used to explore the correlation between the components variation in CGD extracts and the comprehensive efficacy index. The potential effective components were further accessed by molecular docking. RESULTS: Comparing with the other three extracts, AWE has the best anti-influenza effect. It could ameliorate the symptoms caused by influenza virus infection in mice, increase body weight and rectal temperature, reduce the lung index and virus load in lung tissue. 129, 144, 140 and 129 components were identified from TD, AWE, AE, and WE respectively. The identified components were mainly including flavonoids, terpenoids, organic acids, phenylpropanoids, amino acids, nucleosides, phenols, alkaloids, etc. 43 prototypes and 49 metabolites of CGD were detected in rat plasma after oral administration. Seven components, cinnamaldehyde, wogonoside, baicalin, baicalein, gallic acid, oroxylinA-7-O-glucuronide and coumarin, showed significant correlation with anti-influenza effects, all of which had good binding activity with NA, IL-6, STAT3, AKT1, EGFR and TNF. CONCLUSION: Two steps alcohol-water extraction was optimal for CGD preparation. Cinnamaldehyde, wogonoside, oroxylinA-7-O-glucuronide, coumarin, gallic acid, baicalein and baicalin play a certain essential role in anti-influenza effects and may be taken as a potential maker compounds for quality evaluation of CGD.


Assuntos
Medicamentos de Ervas Chinesas , Influenza Humana , Ratos , Camundongos , Animais , Humanos , Simulação de Acoplamento Molecular , Glucuronídeos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Peso Corporal , Cumarínicos , Ácido Gálico , Água
4.
J Ethnopharmacol ; 298: 115624, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970314

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gerberae Piloselloidis Herba (GPH), a commonly used traditional medicine in China, is derived from Gerbera piloselloides (Linn.) Cass. It is featured by its special bioactivities as antitussive, expectorant, anti-asthma, anti-bacterial, anti-tumor, uterine analgesia, and immunity-enhancing. With a long history of medication in ethnic minority areas in China, it is often used as an effective treatment for cough and sore throat as well as allergic asthma. Although our previous investigation also has discovered GPH performed effective treatment on allergic asthma, its underlying mechanism remains unclear. AIM OF THE STUDY: This research aims to reveal the pharmacological mechanism of GPH in the treatment for allergic asthma through combination of plasma pharmacology and network pharmacology. MATERIALS AND METHODS: Firstly, the components of GPH in blood samples were identified using UHPLC- Q-Orbitrap HRMS. An interaction network of "compound-target-disease" was constructed based on the compounds confirmed in blood and on their corresponding targets of allergic asthma acquired from disease gene databases, predicting the possible biological targets and potential signal pathways of GPH with the network pharmacology analysis. Then, a molecular docking between the blood ingredients and the core targets was carried out using the Autodock Vina software. Subsequently, after establishing a mouse model with allergic asthma induced by ovalbumin (OVA), the effect of GPH on allergic asthma was evaluated by analyzing a series of indicators including behavior, lung pathological changes, inflammatory factors in serum and bronchoalveolar lavage fluid (BALF). Finally, the key pathway and targets predicted by network pharmacology and molecular docking were further verified using Western blot analysis. RESULTS: Eleven chemical constituents (such as arbutin, neochlorogenic acid, chlorogenic acid, etc.) were identified through the analysis of plasma samples, on which basis a total of 142 genes intersecting GPH and allergic asthma were collected by network pharmacology. After performing enrichment analysis of these genes in gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG), it was found that arbutin-related targets mainly focused on phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signal pathway, while luteolin and marmesin -related targets tended to locate at Interleukin-17 (IL-17) signal pathway. Meanwhile, the findings of molecular docking suggested that such components as arbutin, luteolin and marmesin entering into blood had good binding with the core targets related to PI3K/Akt and IL-17 pathways. In addition, GPH improved the OVA-induced asthma symptoms, the alveolar septa thickening and the infiltration of inflammatory cell around bronchi and bronchioles as well as reduced the levels of IgE, IL-8 and TNF-α in serum or BALF. Furthermore, GPH could inhibit the phosphorylation level of Akt and the expression of PI3K, an efficacy supported by the findings by way of Western blot which suggests that GPH in the treatment of allergic asthma was linked to PI3K/Akt signal pathway. CONCLUSION: In this study, a comprehensive strategy to combine the UPLC-Q-Orbitrap HRMS with network pharmacology was employed to clarify the mechanism of GPH against allergic asthma, a finding where GPH may inhibit PI3K/Akt signal pathway to protect mice from OVA-induced allergic asthma. This study provides a deeper understanding of the pharmacological mechanism of GPH in treatment of asthma, offering a scientific reference for further research and clinical application of GPH in terms of allergic asthma.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Animais , Arbutina , Asma/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Etnicidade , Humanos , Interleucina-17 , Luteolina/uso terapêutico , Camundongos , Grupos Minoritários , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ovalbumina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Front Pharmacol ; 13: 899038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677447

RESUMO

Xinkeshu tablets (XKST), a traditional Chinese patent medicine (CPM), have served in the clinical treatment of cardiovascular diseases (CVDs) for decades. However, its pharmacodyamic material basis was still unclear, and the holistic quality control has not been well established due to the lack of systematic research on the quality markers. In this experiment, the heart rate recovery rate of a zebrafish larva was used to evaluate the traditional pharmacological effect of XKST i.e., antiarrhythmic effect. The HPLC fingerprints of 16 batches of XKST samples were obtained, and antiarrhythmic components of XKST were identified by establishing the spectrum-effect relationship between HPLC fingerprints and heart rate recovery rate of zebrafish larva with orthogonal signal correction and partial least squares regression (OSC-PLSR) analysis. The anticardiovascular disease components of XKST were identified by mapping the targets related to CVDs in network pharmacology. The compounds of XKST absorbed and exposed in vivo were identified by ultra-high performance liquid chromatography Q-Exactive high-resolution mass spectrometry (UHPLC-Q-Exactive HRMS). Based on the earlier studies, combined with five principles for identifying quality markers and verified by a zebrafish arrhythmia model, danshensu, salvianolic acid A, salvianolic acid B, daidzein, and puerarin were identified as quality markers of XKST. In total, 16 batches of XKST samples were further quantified with the method established in this study. Our study laid the foundation for the quality control of XKST. The integrated strategy used in the study of XKST could be applied for the identification and quantification of quality markers of other CPMs as well.

6.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5393-5402, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738443

RESUMO

To study the active chemical components and mechanism of Liangfu Dropping Pills in treatment of gastrointestinal diseases. The UHPLC-Q-TOF-MS method was employed to analyze the components of Liangfu Dropping Pills in plasma. The protein targets of the absorbed compounds were predicted in the TCMSP database and the SwissTargetPrediction database. The targets associated with gastrointestinal diseases were collected from OMIM, CTD, GeneCards, and DrugBank. The common target genes between components and diseases were screened out for the building of protein-protein interaction(PPI) network in the STRING database. Metascape was used to carry out gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. Cytoscape was employed to construct the PPI network diagram and absorbed component-target network diagram. The molecular docking between the components absorbed in blood and potential key targets was performed by AutoDock vina 4.2.6 to screen and verify the main active components and targets. Twelve chemcial components were identified in Liangfu Dropping Pills, in which four components were absorbed in blood, including galangin, rhamnocitrin, galangin 3-methyl ether, and α-cyperone. These components acted on 189 common targets which were mainly involved in the cell responses to nitrogen compounds, organic cyclic compounds, and hormones, and enriched in the PI3 K-Akt signaling pathway, Foxo signaling pathway, and IL-17 signaling pathway. Molecular docking results showed that the four components had strong affinity with core targets. The material basis of Liangfu Dropping Pills treating gastrointestinal diseases may be galangin, rhamnocitrin, galangin 3-methyl ether, and α-cyperone. This study provides a theoretical basis for further development and application of Liangfu Dripping Pills.


Assuntos
Medicamentos de Ervas Chinesas , Gastroenteropatias , Humanos , Simulação de Acoplamento Molecular , Transdução de Sinais
7.
J Ethnopharmacol ; 279: 114373, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181959

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prunella vulgaris L. (P. vulgaris) is a medicinal plant belonging to the Labiatae family, and its dried spikes is called as Xiakucao in China, which is a common traditional Chinese medicine with the activities of clearing the liver and expelling fire, improving eyesight, dispersing nodules and detumescence. Modern pharmacological studies have proved that P. vulgaris has various pharmacological activities such as immunomodulatory, antiviral, antibacterial and anti-insomnia activities. AIMS OF THIS REVIEW: P. vulgaris have been reported to have anti-insomnia effects. Nevertheless, the pharmacodynamic substance basis of this anti-insomnia effect is still unclear. The aim of this study was to identify the active components responsible for evoking the anti-insomnia effect of P. vulgaris and to evaluate its anti-insomnia effect. MATERIALS AND METHODS: In this study, we proposed a method combined with pharmacodynamic experiments, extraction and enrichment of chemical components, and the plasma pharmacochemistry to screen out the anti-insomnia components of P. vulgaris. Firstly, the active eluted fraction of the ethanol extract was screened out based on pharmacodynamic tracing method, and then the chemical composition was analyzed systematically by UPLC-MS/MS. Thirdly, pharmacodynamic tracing method and silica gel column chromatography were employed to screen out the active fraction of 70% ethanol eluted fraction, and its bioactive components in vitro and in vivo were identified by UPLC-MS/MS. Finally, screening out the anti-insomnia components of P. vulgaris by comparing the difference between in vivo and in vitro components, and three potentially bioactive ingredients were validated experimentally. RESULTS: It was confirmed that the fraction eluted with 70% ethanol from macroporous adsorption resin column was responsible for the anti-insomnia efficacy, and 55 compounds were identified or preliminarily identified. Then totally 9 compounds in vitro and 12 compounds in vivo from the active fraction of 70% ethanol eluted fraction were tentatively identified. Among them, mangiferin, rosmarinic acid and salviaflaside were the prototype components of P. vulgaris, which indicated that the three compounds might play the key role in the anti-insomnia activities. In vivo, compared to blank control group, the three compounds significantly shortened the sleeping latency and prolonged the sleeping time produced by pentobarbital sodium. CONCLUSIONS: This study clarified that mangiferin, rosmarinic acid and salviaflaside were considered as the anti-insomnia components of P. vulgaris. This is the first study on screening out the active ingredients responsible for evoking the anti-insomnia effect of P. vulgaris. The three compounds of P. vulgaris may help develop one or more drugs to prevent or treat insomnia. Further investigations are recommended to define the mechanism of the anti-insomnia activity of P. vulgaris.


Assuntos
Extratos Vegetais/farmacologia , Prunella/química , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Animais , Cromatografia Líquida de Alta Pressão , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenilpropionatos/isolamento & purificação , Fenilpropionatos/farmacologia , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Xantonas/isolamento & purificação , Xantonas/farmacologia , Ácido Rosmarínico
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-921686

RESUMO

To study the active chemical components and mechanism of Liangfu Dropping Pills in treatment of gastrointestinal diseases. The UHPLC-Q-TOF-MS method was employed to analyze the components of Liangfu Dropping Pills in plasma. The protein targets of the absorbed compounds were predicted in the TCMSP database and the SwissTargetPrediction database. The targets associated with gastrointestinal diseases were collected from OMIM, CTD, GeneCards, and DrugBank. The common target genes between components and diseases were screened out for the building of protein-protein interaction(PPI) network in the STRING database. Metascape was used to carry out gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. Cytoscape was employed to construct the PPI network diagram and absorbed component-target network diagram. The molecular docking between the components absorbed in blood and potential key targets was performed by AutoDock vina 4.2.6 to screen and verify the main active components and targets. Twelve chemcial components were identified in Liangfu Dropping Pills, in which four components were absorbed in blood, including galangin, rhamnocitrin, galangin 3-methyl ether, and α-cyperone. These components acted on 189 common targets which were mainly involved in the cell responses to nitrogen compounds, organic cyclic compounds, and hormones, and enriched in the PI3 K-Akt signaling pathway, Foxo signaling pathway, and IL-17 signaling pathway. Molecular docking results showed that the four components had strong affinity with core targets. The material basis of Liangfu Dropping Pills treating gastrointestinal diseases may be galangin, rhamnocitrin, galangin 3-methyl ether, and α-cyperone. This study provides a theoretical basis for further development and application of Liangfu Dripping Pills.


Assuntos
Humanos , Medicamentos de Ervas Chinesas , Gastroenteropatias , Simulação de Acoplamento Molecular , Transdução de Sinais
9.
J Pharm Biomed Anal ; 169: 159-169, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30870692

RESUMO

BACKGROUND AND OBJECTIVES: Shen-Fu-Shu granule is traditional Chinese herb formula for acute and chronic renal failure. This work was aimed to identify the compounds in Shen-Fu-Shu granule extract and absorbed compounds in rat plasma following oral administration of Shen-Fu-Shu granule. METHODS: A high-resolution and high-sensitivity ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry in positive and negative ion mode were established. The methodology of plasma pharmacochemistry was adopted to analyze the herbal components in vivo. A post-acquisition data processing software UNIFI could automatically, rapidly and accurately achieve the qualitative analysis of the chemical components in Shen-Fu-Shu granule extract and the absorbed components (and their metabolites) in rat plasma after oral administration of Shen-Fu-Shu granule. RESULTS: Combined with fragments and structure information of LC-Q-TOF-MS, a total of 264 compounds were detected and identified in Shen-Fu-Shu granule extract, while 66 absorbed components (including 38 prototype compounds and 28 metabolites) in plasma were discovered or tentatively characterized in rat plasma. CONCLUSIONS: This study offers a systematically applicable approach for rapid screening and identification of absorbed components derived from multi-herb prescription. It is helpful for understanding the material basis of its therapeutic effects and provides useful information for further study of mechanism of action of Shen-Fu-Shu granule.


Assuntos
Medicamentos de Ervas Chinesas/química , Extratos Vegetais/sangue , Extratos Vegetais/química , Plasma/química , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
10.
Front Pharmacol ; 9: 1051, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356765

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by chronic destructive synovitis and is associated with progressive disability, systemic difficulties, premature death, and socioeconomic costs. Early intervention with disease-modifying antirheumatic drugs (DMARDs) like methotrexate (MTX) and its combination regimen would provide obvious benefits to patients, healthcare systems and society. MTX and tripterygium glycosides tablets (TGTS) are most frequently prescribed medicines for RA, and the combination of them occurs frequently in anti-RA prescriptions. While the underlying combination mechanisms and the affected variation of drug blood level remain unclear. According to the American College of Rheumatology criteria for improvement, clinical evaluation following three treatment groups (i.e., MTX and TGTS mono- and combined groups) were carried out at baseline and at the end of 12 weeks in a randomized controlled clinical trial. To monitor the affected variation of drug blood level and perturbation of metabolites caused by MTX plus TGTS combined to treat active RA, the collected plasma samples were analyzed using RRLC-QqQ-MS and UHPLC-QE Orbitrap HRMS instruments. As a result, 39 metabolites including 7 MTX-related metabolites, 13 TGTS-related migratory ingredients and 19 characteristic endogenous metabolites, were quantitatively determined in plasma samples of RA patients after oral administration. The potential mechanism of MTX and TGTS combination were preliminarily elucidated on the aspect of clinical biochemical test indicators integrated with quantitative plasma pharmacochemistry and the pseudotargeted metabolomics.

11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-852493

RESUMO

Objective To establish the plasma fingerprint of Danggui Shaoyao Powder (DSP) for the analysis of the transitional components in rat plasma after administration of DSP extracts Methods Eleven batches of rat plasma were prepared after oral administration and the plasma fingerprint was established by UPLC-UV. The transitional components in rat plasma after administration of DSP extracts was analyzed by UPLC-Q/TOF-MS. Results The plasma fingerprints of common peaks for 11 batches of DSP were established to ascertain the optimized blood collection time, and the method was used to process the plasma. Fifteen common peaks were detected in plasma fingerprint, and the similarity were both higher than 0.933. The methodology of plasma pharmacochemistry was adopted to analyze the common peaks, and 15 transitional components, including 10 prototype components and five metabolites were identified. Conclusion The established plasma fingerprint of DSP provide the basis for the further study of transitional components.

12.
J Sep Sci ; 38(9): 1507-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25678430

RESUMO

Daming capsule is a traditional Chinese medicine for hyperlipidemia treatment. However, the vague understanding of the bioactive components of Daming capsule hampers its modernization and internationalization. This work first developed a high-throughput, high-resolution, and high-sensitivity ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry method for identifying the absorbed compounds and monitoring the pharmacokinetics of Daming capsule. A high-throughput strategy integrating plasma pharmacochemistry, pharmacokinetics, and pattern recognition analysis was also established for screening the bioactive components of Daming capsule in vivo. The established strategy based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry was successfully applied to screen the bioactive components of Daming capsule. Up to 53 absorbed compounds were identified. Six anthraquinones with fast and high absorption, namely, emodin-O-glucoside, aurantio-obtusin, aloe-emodin, rhein, emodin, and chrysophanol, were screened as potentially bioactive components of Daming capsule. The plasma pharmacochemistry and pharmacokinetics of Daming capsule were reported for the first time. Notably, the high-throughput and reliable strategy facilitated the screening and identification of bioactive components of traditional Chinese medicine, thereby providing novel insights into the research and development of new drugs.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacocinética , Administração Oral , Animais , Cápsulas , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
13.
J Ethnopharmacol ; 150(1): 324-38, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24012529

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 'Ershiwuwei Shanhu' pill (ESP), a classical and famous prescription of traditional Tibetan medicine, has a long history of empirical clinical use for the treatment of cerebrovascular and neurological diseases, but the absence of scientific evidence for its effect restricted its clinical application and further development. MATERIALS AND METHODS: The methodology of plasma pharmacochemistry was adopted to analyze the potentially bioactive components in ESP extracts. A method based on UPLC-DAD/Q-TOF-MS was established to identify herb components in ESP extracts and analyze the absorbed components of ESP and their metabolites in rat plasma, brain, heart, liver and kidney samples after oral administration of ESP extracts. RESULTS: A total of 61 herb components were detected and identified in ESP extracts, while 35 absorbed components-including 19 prototype compounds and 16 metabolites-were discovered as potentially bioactive components in rat plasma and tissues by comparative analysis of the UV and MS chromatograms of ESP extracts, blank biosamples and dosed biosamples. CONCLUSIONS: The potentially bioactive components of ESP extracts identified from rat plasma and tissues provide useful information for further study of the pharmacology and mechanism of action of ESP.


Assuntos
Extratos Vegetais/farmacocinética , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Rim/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas/métodos , Medicina Tradicional Tibetana , Miocárdio/metabolismo , Extratos Vegetais/sangue , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...