Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
1.
Curr Pharm Des ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38982925

RESUMO

Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle-loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in-vitro experiments conducted using different cell lines, as well as the in-vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.

2.
Macromol Rapid Commun ; : e2400400, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981020

RESUMO

With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38967827

RESUMO

Alzheimer's disease remains an unsolved neurological puzzle with no cure. Current therapies offer only symptomatic relief, hindered by limited uptake through the blood-brain barrier. Auranofin, an FDA-approved compound, exhibits potent antioxidative and anti-inflammatory properties targeting brain disorders. Yet, its oral bioavailability challenge prompts the exploration of nanoformulation-based solutions enhancing blood-brain barrier penetrability. The study aimed to investigate the neuroprotective potential of auranofin nanoparticles in streptozotocin-induced AD rats. Auranofin-containing polylactic-co-glycolic acid nanoparticles were formulated by the multiple emulsion solvent evaporation method. Characterization was done by determining entrapment efficiency, particle size distribution, surface charge, and morphology. An in vivo study was performed by administering streptozotocin (3 mg/kg/i.c.v., days 1 and 3), auranofin (5 and 10 mg/kg), auranofin nanoparticles (2.5 and 5 mg/kg), and donepezil (2 mg/kg) for 14 days orally. Behavioral deficits were evaluated using the open field test, Morris water maze, objective recognition test, change in oxidative stress levels, and AD markers in the brain. Following the decapitation of the rats, the brains were excised to isolate the hippocampus. Subsequent analyses included the quantification of biochemical and neuroinflammatory markers, as well as the assessment of neurotransmitter levels. The characterization of auranofin nanoparticles showed an entrapment efficiency of 98%, an average particle size of 101.5 ± 10.3 nm, a surface charge of 27.5 ± 5.10 mV, and a polydispersity index of 0.438 ± 0.12. In vivo, administration of auranofin and auranofin nanoparticles significantly reversed streptozotocin-induced cognitive deficits, biochemical alteration, neuroinflammatory markers, and neurotransmitter levels. The present finding suggests that auranofin nanoparticles have more significant neuroprotective potential than auranofin alone. The therapeutic efficacy may be attributed to its antioxidant and anti-inflammatory properties, as well as its positive neuromodulatory effects. Therefore, our findings suggest that it could be a promising candidate for Alzheimer's disease therapy.

4.
J Nanobiotechnology ; 22(1): 306, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825717

RESUMO

Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.


Assuntos
Actínio , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Actínio/química , Humanos , Linhagem Celular Tumoral , Animais , Partículas alfa/uso terapêutico , Camundongos , Feminino , Materiais Biocompatíveis/química , Neoplasias da Mama/tratamento farmacológico , Radioimunoterapia/métodos
5.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794552

RESUMO

Nanotechnology is one of the newest directions for plant-based therapies. Chronic venous disease often predisposes to long-term and invasive treatment. This research focused on the inclusion of vegetal extracts from Sophorae flos (SE), Calendulae flos (CE), and Ginkgo bilobae folium (GE) in formulations with PHB and PLGA polymers and their physicochemical characterization as a preliminary stage for possible use in the development of a complex therapeutic product. The samples were prepared by an oil-water emulsification and solvent evaporation technique, resulting in suspensions with high spreadability and a pH of 5.5. ATR-FTIR analysis revealed bands for stretching vibrations (O-H, C=O, and C-H in symmetric and asymmetric methyl and methylene) in the same regions as the base components, but switched to high or low wavenumbers and absorbance, highlighting the formation of adducts/complexes between the extracts and polymers. The obtained formulations were in the amorphous phase, as confirmed by XRD analysis. AFM analysis emphasized the morphological peculiarities of the extract-polymer nanoformulations. It could be noticed that, in the case of SE-based formulations, the dominant characteristics for SE-PHB and SE-PLGA composition were the formation of random large (SE-PHB) and smaller uniform (SE-PLGA) particles; further on, these particles tended to aggregate in the case of SE-PHB-PLGA. For the CE- and GE-based formulations, the dominant surface morphology was their porosity, generally with small pores, but larger cavities were observed in some cases (CE- and GE-PHB). The highest roughness values at the (8 µm × 8 µm) scale were found for the following samples and succession: CE-PHB < SE-PLGA < SE-PHB-PLGA. In addition, by thermogravimetric analysis, impregnation in the matrix of compression stockings was evaluated, which varied in the following order: CE-polymer > SE-polymer > GE-polymer. In conclusion, nine vegetal extract-polymer nanoformulations were prepared and preliminarily characterized (by advanced physicochemical methods) as a starting point for further optimization, stability studies, and possible use in complex pharmaceutical products.

6.
J Med Life ; 17(2): 217-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38813352

RESUMO

Insulin is the cornerstone of treatment in type 1 diabetes mellitus. However, because of its protein structure, insulin has to be administered via injection, and many attempts have been made to create oral formulations, especially using nanoparticles (NPs). The aim of this study was to compare the hypoglycemic effect of insulin-loaded NPs to that of subcutaneous insulin in an in vivo rat model of diabetes. We used biodegradable D-α-tocopherol polyethylene glycol succinate-emulsified, chitosan-capped poly(lactic-co-glycolic acid) NPs loaded with soluble human insulin in a dose of 20 IU/kg body weight, and examined the physical characteristics of NPs in vivo and in vitro. Serum glucose levels were reduced after 6 h, but the difference was not significant compared to subcutaneous insulin; at 12 h and 24 h, insulin levels were significantly higher in rats treated with NPs than in rats treated with subcutaneous insulin. There was no significant difference in serum insulin levels at 12 h and 24 h compared to non-diabetic rats. Our findings suggest that chitosan-based NPs are able to maintain good glycemic control for up to 24 h and can be considered a potential carrier for oral insulin delivery.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Insulina , Nanopartículas , Estreptozocina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Insulina/sangue , Insulina/administração & dosagem , Ratos , Administração Oral , Masculino , Hiperglicemia/tratamento farmacológico , Quitosana/química , Glicemia , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Modelos Animais de Doenças , Ratos Sprague-Dawley
7.
J Biomater Appl ; : 8853282241258311, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820587

RESUMO

BACKGROUND: Diclofenac sodium (DS) and celecoxib (CEL) are primary anti-inflammatory agents used in the treatment of osteoarthritis (OA). Formulating these drugs into extended-release versions can effectively address the issue of multiple daily doses. In this study, we designed and synthesized a novel poly(lactic-co-glycolic acid) (PLGA) nanoliposome as a dual-drug delivery sustained-release formulation (PPLs-DS-CEL) to achieve long-lasting synergistic treatment of OA with both DS and CEL. METHODS: PPLs-DS-CEL was synthesized by the reverse evaporation method and evaluated for its physicochemical properties, encapsulation efficiency, drug release kinetics and biological properties. A rat OA model was established to assess the therapeutic efficacy and biosafety of PPLs-DS-CEL. RESULTS: The particle size of PPLs-DS-CEL was 218.36 ± 6.27 nm, with a potential of 32.56 ± 3.28 mv, indicating a homogeneous vesicle size. The encapsulation of DS and CEL by PPLs-DS-CEL was 95.18 ± 4.43% and 93.63 ± 5.11%, with drug loading of 9.56 ± 0.32% and 9.68 ± 0.34%, respectively. PPLs-DS-CEL exhibited low cytotoxicity and hemolysis, and was able to achieve long-lasting synergistic analgesic and anti-inflammatory therapeutic effects in OA through slow release of DS and CEL, demonstrating good biosafety properties. CONCLUSION: This study developed a novel sustained-release nanoliposomes formulation capable of co-loading two drugs for the long-acting synergistic treatment of OA. It offers a new and effective therapeutic strategy for OA treatment in the clinic settings and presents a promising approach for drug delivery systems.

8.
Biomater Adv ; 161: 213862, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678666

RESUMO

The emergence of antibiotic resistance makes the treatment of bacterial infections difficult and necessitates the development of alternative strategies. Targeted drug delivery systems are attracting great interest in overcoming the limitations of traditional antibiotics. Here, we aimed for targeted delivery of rifaximin (RFX) by decorating RFX-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with synthetic P6.2 peptide, which was used as a targeting agent for the first time. Our results showed that encapsulation of RFX into NPs increased its antibacterial activity by improving its solubility and providing controlled release, while P6.2 modification allowed targeting of NPs to S. aureus bacterial cells. A promising therapeutic approach for bacterial infections, these P6.2-conjugated RFX-loaded PLGA NPs (TR-NP) demonstrated potent antibacterial activity against both strains of S. aureus. The antibacterial activity of RFX-loaded PLGA NPs (R-NP) showed significant results with an increase of 8 and 16-fold compared to free RFX against S. aureus and MRSA, respectively. Moreover, the activity of targeted nanoparticles was found to be increased 32 or 16-fold with an MBC value of 0.0078 µg/mL. All nanoparticles were found to be biocompatible at doses where they showed antimicrobial activity. Finally, it revealed that P6.2-conjugated targeted nanoparticles extremely accumulated in S. aureus rather than E. coli.


Assuntos
Antibacterianos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Rifaximina , Infecções Estafilocócicas , Staphylococcus aureus , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Rifaximina/farmacologia , Rifaximina/química , Nanopartículas/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Humanos , Rifamicinas/farmacologia , Rifamicinas/química , Rifamicinas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
9.
Saudi Pharm J ; 32(5): 102064, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38633710

RESUMO

Hepatocellular carcinoma (HCC) exhibits high mortality rates in the advanced stage (>90 %). Sorafenib (SORA) is a targeted therapy approved for the treatment of advanced HCC; however, the reported response rate to such a therapeutic is suboptimal (<3%). Piperine (PIP) is an alkaloid demonstrated to exert a direct tumoricidal activity in HCC and improve the pharmacokinetic profiles of anticancer drugs including SORA. In this study, we developed a strategy to improve efficacy outcomes in HCC using PIP as an add-on treatment to support the first-line therapy SORA using biodegradable Poly (D, L-Lactide-co-glycolide, PLGA) nanoparticles (NPs). SORA and PIP (both exhibit low aqueous solubility) were co-loaded into PLGA NPs (PNPs) and stabilized with various concentrations of polyvinyl alcohol (PVA). The SORA and PIP-loaded PNPs (SP-PNPs) were characterized using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Powder Diffraction (XRD), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM), Release of these drugs from SP-PNPs was investigated in vitro at both physiological and acidic pH, and kinetic models were employed to assess the mechanism of drug release. The in vitro efficacy of SP-PNPs against HCC cells (HepG2) was also evaluated. FTIR and XRD analyses revealed that the drugs encapsulated in PNPs were in an amorphous state, with no observed chemical interactions among the drugs or excipients. Assessment of drug release in vitro at pH 5 and 7.4 showed that SORA and PIP loaded in PNPs with 0.5 % PVA were released in a sustained manner, unlike pure drugs, which exhibited relatively fast release. SP-PNPs with 0.5 % PVA were spherical, had an average size of 224 nm, and had a high encapsulation efficiency (SORA âˆ¼ 82 %, PIP âˆ¼ 79 %), as well as superior cytotoxicity compared to SORA monotherapy in vitro. These results suggest that combining PIP with SORA using PNPs may be an effective strategy for the treatment of HCC and may set the stage for a comprehensive in vivo study to evaluate the efficacy and safety of this novel formulation using a murine HCC model.

10.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543431

RESUMO

In addressing the challenge of enhancing orthopedic implants, 3D porous calcium phosphate (CaP) coatings on titanium (Ti) substrates modified with poly(lactic-co-glycolic acid) (PLGA) were proposed. CaP coatings on Ti were deposited using the ultrasonic-assisted micro-arc oxidation (UMAO) method, followed by modification with PLGA through a dip coating process at concentrations of 5%, 8%, and 10%. The addition of PLGA significantly improved adhesive-cohesive strength according to the scratch test, while PLGA to CaP adhesion was found to be not less than 8.1 ± 2.2 MPa according to the peel test. Tensile testing showed a typical fracture of CaP coatings and mechanisms of brittle fracture. Corrosion resistance, assessed via gravimetric and electrochemical methods in 0.9% NaCl and PBS solutions, revealed PLGA's substantial reduction in corrosion rates, with the corrosion current decreasing by two orders of magnitude even for the 5% PLGA/CaP/Ti sample. Also, the PLGA layer significantly enhanced the impedance modulus by two orders of magnitude, indicating a robust barrier against corrosion at all PLGA concentrations. Higher PLGA concentrations offered even greater corrosion resistance and improved mechanical properties. This research underscores the potential of using CaP- and PLGA-modified coatings to extend the life and functionality of orthopedic implants, addressing a significant challenge in biomedical engineering.

11.
J Endod ; 50(5): 667-673, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447912

RESUMO

INTRODUCTION: The aim of this study was to evaluate the anti-osteoclastic activity of calcium hydroxide-loaded poly(lactic-co-glycolic acid) nanoparticles [Ca(OH)2-loaded PLGA NPs] in comparison to calcium hydroxide nanoparticles [Ca(OH)2 NPs]. METHODS: RAW 264.7 cell lines (third-fifth passage) were cultured and incubated with soluble receptor activator of nuclear factor kappa B ligand in triplicate. Subsequently, Ca(OH)2-loaded PLGA NPs and Ca(OH)2 NPs were added for 7 days to evaluate their effects on receptor activator of nuclear factor kappa B ligand-induced osteoclast differentiation of RAW 264.7 cells by tartrate-resistant acid phosphatase activity. Additionally, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to confirm the cytotoxicity of treatments to cells. RESULTS: Tartrate-resistant acid phosphatase staining showed a significant reduction in the osteoclast number when treated with Ca(OH)2-loaded PLGA NPs compared with Ca(OH)2 NPs (P < .01). In comparison to the control, the number of osteoclasts significantly reduced upon treatment with Ca(OH)2-loaded PLGA NPs (P < .05), but there was no significant difference in Ca(OH)2 NPs. Furthermore, osteoclast morphology in both treatment groups exhibited smaller sizes than the control group. Neither Ca(OH)2-loaded PLGA NPs nor Ca(OH)2 NPs demonstrated cytotoxic effects on RAW264.7 cells. CONCLUSIONS: Both Ca(OH)2 NPs with and without poly(lactic-co-glycolic acid) have the ability to inhibit osteoclast differentiation. However, Ca(OH)2-loaded PLGA NPs exhibit greater potential than Ca(OH)2 NPs, making them a promising intracanal medicament for cases of root resorption.


Assuntos
Hidróxido de Cálcio , Nanopartículas , Osteoclastos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Hidróxido de Cálcio/farmacologia , Osteoclastos/efeitos dos fármacos , Animais , Camundongos , Células RAW 264.7 , Irrigantes do Canal Radicular/farmacologia , Ácido Láctico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ácido Poliglicólico
12.
Artigo em Inglês | MEDLINE | ID: mdl-38347431

RESUMO

Chemotherapy and immunotherapy are two important modalities in cancer management. However, due to multiple reasons, a monotherapy is only partially effective. Hence, if used concurrently in targeted and stimuli-responsive manner, it could have been superior therapeutically. To facilitate co-delivery of chemotherapeutic and immunotherapeutic agent to the target cancer cells, engineered nanoparticles, i.e., a pH-responsive polymer PLGA-coated magnetic silica nanoparticles (Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs) encapsulating paclitaxel (PTX) and siRNA against programmed cell death ligand-1 (PD-L1) are synthesized and characterized. Developed nanoparticles demonstrated pH-sensitive sustained drug release up to 10 days. In vitro 4T1 cell line studies showed efficient cellular uptake, PD-L1 gene downregulation, and apoptosis. Further, in vivo efficacy studies carried out in the mice model demonstrated a significant reduction of tumor growth following treatment with dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs as compared with monotherapy with Fe3O4-SiO2-PLGA-PDA-PTX NPs. The high therapeutic efficacy observed with dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs was mainly due to the cytotoxic effect of PTX combined with targeted silencing of the gene of interest, i.e., PD-L1, which in turn improve CD8+ T cell-mediated cancer cell death as evident with increased proliferation of CD8+ T cells in co-culture experiments. Thereby, dual-Fe3O4-SiO2-PLGA-PDA-PTX-siRNA NPs may have a promising anti-cancer treatment potential against breast cancer; however, the beneficial effects of dual loading of PTX + PD-L1 siRNA may be corroborated against other cancer models such as lung and colorectal cancer models as well as in clinical trials.

13.
Craniomaxillofac Trauma Reconstr ; 17(1): 61-73, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371215

RESUMO

Study Design: Human bone marrow stem cells (hBMSCs) and human adipose-derived stem cells (hADSCs) have demonstrated the capability to regenerate bone once they have differentiated into osteoblasts. Objective: This systematic review aimed to evaluate the in vitro osteogenic differentiation potential of these cells when seeded in a poly (lactic-co-glycolic) acid (PLGA) scaffold. Methods: A literature search of 4 databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted in January 2021 for studies evaluating the osteogenic differentiation potential of hBMSCs and hADSCs seeded in a PLGA scaffold. Only in vitro models were included. Studies in languages other than English were excluded. Results: A total of 257 studies were identified after the removal of duplicates. Seven articles fulfilled our inclusion and exclusion criteria. Four of these reviews used hADSCs and three used hBMSCs in the scaffold. Upregulation in osteogenic gene expression was seen in all the cells seeded in a 3-dimensional scaffold compared with 2-dimensional films. High angiogenic gene expression was found in hADSCs. Addition of inorganic material to the scaffold material affected cell performance. Conclusions: Viability, proliferation, and differentiation of cells strongly depend on the environment where they grow. There are several factors that can enhance the differentiation capacity of stem cells. A PLGA scaffold proved to be a biocompatible material capable of boosting the osteogenic differentiation potential and mineralization capacity in hBMSCs and hADSCs.

14.
Med Eng Phys ; 124: 104110, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38418021

RESUMO

Drug-eluting contact lenses (DECLs) incorporated with poly(lactic-co-glycolic acid) (PLGA) and various model drugs (ketotifen fumarate, bimatoprost and latanoprost) were fabricated using nanoelectrospray (nES) approach. The resulting DECLs demonstrated outstanding optical transmittance within the optical zone, indicating that the employed coating procedure did not compromise visual acuity under the prescribed spraying parameters. In vitro drug release assessments of the model drugs (ketotifen fumarate (KF), bimatoprost (BIM), and latanoprost (LN)) revealed a strong correlation between the model drug's hydrophobicity and the duration of drug release. Changing the drug loading of the more hydrophilic model drugs, BIM and KF, showed no impact on the drug release kinetics of DECLs loaded with BIM and KF. However, for the hydrophobic model drug, LN, the highest LN loading led to the most extended drug release. The conventional steam sterilisation method was found to damage the PLGA coating on the DECLs fabricated by nES. An alternative sterilisation strategy, such as radiation sterilisation may need to be investigated in the future study to minimise potential harm to the coating.


Assuntos
Lentes de Contato , Cetotifeno , Latanoprosta , Cetotifeno/química , Bimatoprost , Sistemas de Liberação de Medicamentos
15.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338928

RESUMO

The low percentage of recyclability of the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased the interest in their substitution with more eco-friendly materials with reliable physical and mechanical properties. Among the variety of known biodegradable polymers, linear aliphatic polyesters produced by ring-opening polymerization (ROP) of cyclic esters occupy a prominent position. The polymer properties are highly dependent on the macromolecule microstructure, and the control of stereoselectivity is necessary for providing materials with precise and finely tuned properties. In this review, we aim to outline the main synthetic routes, the physical properties and also the applications of three commercially available biodegradable materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), and Poly(3-hydroxybutyrate) (P3HB), all of three easily accessible via ROP. In this framework, understanding the origin of enantioselectivity and the factors that determine it is then crucial for the development of materials with suitable thermal and mechanical properties.


Assuntos
Ésteres , Poliésteres , Polimerização , Ésteres/química , Poliésteres/química , Polímeros , Ácido 3-Hidroxibutírico
16.
Int Immunopharmacol ; 129: 111617, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309093

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory condition, and Dimethyl fumarate (DMF) is known for inducing antioxidant enzymes and reducing reactive oxygen species (ROS). Fibroblast-like synoviocytes (FLS) contribute to joint damage by releasing interleukins (IL-1ß, IL-6, and IL-8) in response to ROS. Given ROS's impact on FLS acquiring an invasive phenotype, our study explored the effects of poly lactic-co-glycolic acid (PLGA) nanoparticles containing DMF on the expression of the HO-1 enzyme and the inflammatory cytokines IL-1ß, IL-6, and IL-8 in FLS cells. METHODS: In this study, we evaluated and compared the impact of Free-DMF and PLGA-DMF, on the gene expression of the HO-1 and inflammatory cytokines (IL-1ß, IL-6, and IL-8) in FLS cells derived from 13 patients with rheumatoid arthritis. qRT-PCR method was used to quantify the gene expression levels. RESULTS: PLGA-DMF nanoparticles demonstrated a significant increase in HO-1 expression and a significant decrease in IL-1ß gene expression. Also, a significant decrease in IL-6 gene expression was seen under the effect of Free-DMF. These results indicate the potential effectiveness of PLGA-DMF nanoparticles in reducing inflammation and improving rheumatoid arthritis symptoms. DISCUSSION: According to the findings, PLGA-DMF nanoparticles are expected to be effective in reducing inflammation and improving the symptoms of rheumatoid arthritis. Also, further studies on other factors affected by oxidative stress such as cell invasion factors and survival factors after the effect of PLGA-DMF nanoparticle are recommended.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Fumarato de Dimetilo/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glicóis/metabolismo , Glicóis/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Estresse Oxidativo , Fibroblastos
17.
Mol Pharm ; 21(4): 1609-1624, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412451

RESUMO

Cannabidiol (CBD) is the most relevant nonpsychostimulant phytocompound found in Cannabis sativa. CBD has been extensively studied and has been proposed as a therapeutic candidate for neuroinflammation-related conditions. However, being a highly lipophilic drug, it has several drawbacks for pharmaceutical use, including low solubility and high permeability. Synthetic polymers can be used as drug delivery systems to improve CBD's stability, half-life, and biodistribution. Here, we propose using a synthetic polymer as a nanoparticulate vehicle for CBD (NPCBD) to overcome the pharmacological drawbacks of free drugs. We tested the NPCBD-engineered system in the context of ischemic events in a relevant oxygen and glucose deprivation (OGD) model in primary cortical cells (PCC). Moreover, we have characterized the inflammatory response of relevant cell types, such as THP-1 (human monocytes), HMC3 (human microglia), and PCC, to NPCBD and observed a shift in the inflammatory state of the treated cells after the ischemic event. In addition, NPCBD exhibited a promising ability to restore mitochondrial function after OGD insult in both HMC3 and PCC cells at low doses of 1 and 0.2 µM CBD. Taken together, these results suggest the potential for preclinical use.


Assuntos
Canabidiol , Humanos , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Doenças Neuroinflamatórias , Distribuição Tecidual , Encéfalo , Oxigênio
18.
Cleft Palate Craniofac J ; 61(4): 592-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604781

RESUMO

INTRODUCTION: In secondary cleft lip and nasal deformity (CLND) correction, structural grafts are commonly used to control the nasal tip and restore the symmetry of the ala. However, the septal cartilage in Asians often weak and small. Biocompatible absorbable materials are alternatives to autologous grafts. This study assessed the surgical outcomes and complications of poly lactic-co-glycolic acid (PLGA) plate grafts in secondary CLND correction. METHODS: This study was retrospectively analyzed for patients who underwent secondary rhinoplasty for unilateral CLND correction between March 2015 and November 2020. Using open rhinoplasty, the PLGA plate was grafted as a columellar strut. Clinical photographs taken at the initial (T0) and follow-up visits (T1: short-term, T2: long-term) were analyzed and anthropometric parameters, such as nostril height and width, dome height, and tip height, were measured. RESULTS: Twenty-four patients were included in this study. The mean T1 and T2 periods were 1.0 ± 0.4 and 15.5 ± 3.1 months, respectively. The nostril height ratio increased from 0.78 ± 0.12 at T0 to 0.88 ± 0.08 at T1 and 0.86 ± 0.09 at T2 (p < 0.001; Relapse ratio -2.6 ± 6.7%). The tip height ratio increased from 0.60 ± 0.07 (T0) to 0.66 ± 0.05 (T2) (Relapse ratio -3.7 ± 3.0%). CONCLUSIONS: The PLGA plate graft provided stable nasal tip projection and alar symmetry without major complications. It can be a good option for patients lacking available septal and concha cartilages or apprehensive of additional scarring.


Assuntos
Fenda Labial , Implantes Dentários , Glicolatos , Rinoplastia , Humanos , Fenda Labial/cirurgia , Estudos Retrospectivos , Glicóis , Cartilagens Nasais/transplante , Resultado do Tratamento , Nariz/cirurgia , Septo Nasal/cirurgia , Recidiva
19.
Transl Res ; 263: 53-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678757

RESUMO

Neuropathic pain is caused by injury or disease of the somatosensory system, and its course is usually chronic. Several studies have been dedicated to investigating neuropathic pain-related targets; however, little attention has been paid to the persistent alterations that these targets, some of which may be crucial to the pathophysiology of neuropathic pain. The present study aimed to identify potential targets that may play a crucial role in neuropathic pain and validate their long-term impact. Through bioinformatics analysis of RNA sequencing results, we identified Slc9a1 and validated the reduced expression of sodium-hydrogen exchanger 1 (NHE1), the protein that Slc9a1 encodes, in the spinal nerve ligation (SNL) model. Colocalization analysis revealed that NHE1 is primarily co-localized with vesicular glutamate transporter 2-positive neurons. In vitro experiments confirmed that poly(lactic-co-glycolic acid) nanoparticles loaded with siRNA successfully inhibited NHE1 in SH-SY5Y cells, lowered intracellular pH, and increased intracellular calcium concentrations. In vivo experiments showed that sustained suppression of spinal NHE1 expression by siRNA-loaded nanoparticles resulted in delayed hyperalgesia in naïve and SNL model rats, whereas amiloride-induced transient suppression of NHE1 expression yielded no significant changes in pain sensitivity. We identified Slc9a1, which encodes NHE1, as a key gene in neuropathic pain. Utilizing the sustained release properties of nanoparticles enabled us to elucidate the chronic role of decreased NHE1 expression, establishing its significance in the mechanisms of neuropathic pain.


Assuntos
Neuralgia , Neuroblastoma , Ratos , Humanos , Animais , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Glicóis , Preparações de Ação Retardada , RNA Interferente Pequeno/genética
20.
J Biomol Struct Dyn ; 42(1): 231-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36995176

RESUMO

For the first time, the interaction of the Poly lactic-co-glycolic acid (PLGA) and Chitosan (CH) with Zirconium dioxide (ZrO2) nanotube was studied using density functional theory (DFT). The binding energies of the most stable configurations of PLGA and CH monomers absorbed on ZrO2 were calculated using density functional theory (DFT) methods. The obtained results indicate that both CH and PLGA monomers were chemisorbed on the surface of ZrO2. The interaction between PLGA and ZrO2 is stronger than that of CH due to its shorter equilibrium interval and higher binding energy. In addition, the electronic density of states (DOS) of the most stable configuration was computed to estimate the electronic properties of the PLGA/CH absorbed on ZrO2. Also, the molecular dynamics (MD) simulations were computed to investigate the mechanical properties of all studied compounds in individual and nanocomposite phases. MD simulation revealed that the shear and bulk moduli of PLGA, CH as well as Young's modulus increase upon interacting with the ZrO2 surface. As a result, the mechanical properties of PLGA and CH are improved by adding ZrO2 to the polymer matrix. The results showed that the elastic modulus of PLGA and CH nanocomposites decreased with increasing temperature. These findings indicate that PLGA-ZrO2 nanocomposites have mechanical and thermal properties, suggesting that they could be exploited as potential agents in biomedical sectors such as bone tissue engineering and drug delivery.Communicated by Ramaswamy H. Sarma.


Assuntos
Quitosana , Nanotubos , Engenharia Tecidual , Quitosana/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alicerces Teciduais/química , Ácido Poliglicólico/química , Glicóis , Ácido Láctico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...