Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1073721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950526

RESUMO

The cotton boll weevil (CBW) (Anthonomus grandis) is one of the major insect pests of cotton in Brazil. Currently, CBW control is mainly achieved by insecticide application, which is costly and insufficient to ensure effective crop protection. RNA interference (RNAi) has been used in gene function analysis and the development of insect control methods. However, some insect species respond poorly to RNAi, limiting the widespread application of this approach. Therefore, nanoparticles have been explored as an option to increase RNAi efficiency in recalcitrant insects. Herein, we investigated the potential of chitosan-tripolyphosphate (CS-TPP) and polyethylenimine (PEI) nanoparticles as a dsRNA carrier system to improve RNAi efficiency in the CBW. Different formulations of the nanoparticles with dsRNAs targeting genes associated with juvenile hormone metabolism, such as juvenile hormone diol kinase (JHDK), juvenile hormone epoxide hydrolase (JHEH), and methyl farnesoate hydrolase (MFE), were tested. The formulations were delivered to CBW larvae through injection (0.05-2 µg), and the expression of the target genes was evaluated using RT-qPCR. PEI nanoparticles increased targeted gene silencing compared with naked dsRNAs (up to 80%), whereas CS-TPP-dsRNA nanoparticles decreased gene silencing (0%-20%) or led to the same level of gene silencing as the naked dsRNAs (up to 50%). We next evaluated the effects of targeting a single gene or simultaneously targeting two genes via the injection of naked dsRNAs or dsRNAs complexed with PEI (500 ng) on CBW survival and phenotypes. Overall, the gene expression analysis showed that the treatments with PEI targeting either a single gene or multiple genes induced greater gene silencing than naked dsRNA (∼60%). In addition, the injection of dsJHEH/JHDK, either naked or complexed with PEI, significantly affected CBW survival (18% for PEI nanoparticles and 47% for naked dsRNA) and metamorphosis. Phenotypic alterations, such as uncompleted pupation or malformed pupae, suggested that JHEH and JHDK are involved in developmental regulation. Moreover, CBW larvae treated with dsJHEH/JHDK + PEI (1,000 ng/g) exhibited significantly lower survival rate (55%) than those that were fed the same combination of naked dsRNAs (30%). Our findings demonstrated that PEI nanoparticles can be used as an effective tool for evaluating the biological role of target genes in the CBW as they increase the RNAi response.

2.
Data Brief ; 41: 107841, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146082

RESUMO

The data provided in this study are related to the fabrication of two light-responsive systems based on reduced graphene oxide (rGO) functionalized with the polymers Pluronic P123 (P123), rGO-P123, and polyethyleneimine (PEI), rGO-PEI, and loaded with amphotericin B (AmB), an antileishmanial drug. Here are described the experimental design to obtain the systems and characterization methods, such as Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman Spectroscopy, Powder X-Ray Diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy and Thermogravimetric Analyses. Also, AmB spectroscopy studies are described. The materials rGO-P123 and rGO-PEI were loaded with AmB and the optimization of AmB and polymer fragments structures revealed several possible hydrogen bonds formed between the materials and the drug. The drug release was analyzed with and without Near-Infrared (NIR) light. In the studies conducted under NIR light irradiation for 10 min, an infrared lamp was disposed at 64 cm from the samples and an optical fiber thermometer was employed to measure the temperature variation. Cytotoxicity studies and antiproliferative assays against Leishmania amazonensis promastigotes were evaluated. The complete work data entitled Amphotericin-B-Loaded Polymer-Functionalized Reduced Graphene Oxides for Leishmania amazonensis Chemo-Photothermal Therapy have been published to Colloids and Surfaces B: Bionterfaces (https://doi.org/10.1016/j.colsurfb.2021.112169) [1].

3.
Polymers (Basel) ; 13(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502886

RESUMO

In this work, we report the synthesis of copper nanoparticles (Cu NPs), employing the chemical reduction method in an aqueous medium. We used copper sulfate pentahydrate (CuSO4·5H2O) as a metallic precursor; polyethylenimine (PEI), allylamine (AAM), and 4-aminobutyric acid (AABT) as stabilizing agents; and hydrated hydrazine as a reducing agent. The characterization of the obtained nanoparticles consisted of X-ray, TEM, FTIR, and TGA analyses. Through these techniques, it was possible to detect the presence of the used stabilizing agents on the surface of the NPs. Finally, a zeta potential analysis was performed to differentiate the stability of the nanoparticles with a different type of stabilizing agent, from which it was determined that the most stable nanoparticles were the Cu NPs synthesized in the presence of the PEI/AAM mixture. The antimicrobial activity of Cu/PEI/AABT toward P. aeruginosa and S. aureus bacteria was high, inhibiting both bacteria with low contact times and copper concentrations of 50-200 ppm. The synthesis method allowed us to obtain Cu NPs free of oxides, stable to oxidation, and with high yields. The newly functionalized Cu NPs are potential candidates for antimicrobial applications.

4.
Curr Gene Ther ; 21(5): 431-451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225620

RESUMO

BACKGROUND: Gene delivery is a promising technology for treating diseases linked to abnormal gene expression. Since nucleic acids are the therapeutic entities in such approach, a transfecting vector is required because the macromolecules are not able to efficiently enter the cells by themselves. Viral vectors have been evidenced to be highly effective in this context; however, they suffer from fundamental drawbacks, such as the ability to stimulate immune responses. The development of synthetic vectors has accordingly emerged as an alternative. OBJECTIVES: Gene delivery by using non-viral vectors is a multi-step process that poses many challenges, either regarding the extracellular or intracellular media. We explore the delivery pathway and afterwards, we review the main classes of non-viral gene delivery vectors. We further focus on the progresses concerning polyethylenimine-based polymer-nucleic acid polyplexes, which have emerged as one of the most efficient systems for delivering genetic material inside the cells. DISCUSSION: The complexity of the whole transfection pathway, along with a lack of fundamental understanding, particularly regarding the intracellular trafficking of nucleic acids complexed to non-viral vectors, probably justifies the current (beginning of 2021) limited number of formulations that have progressed to clinical trials. Truly, successful medical developments still require a lot of basic research. CONCLUSION: Advances in macromolecular chemistry and high-resolution imaging techniques will be useful to understand fundamental aspects towards further optimizations and future applications. More investigations concerning the dynamics, thermodynamics and structural parameters of polyplexes would be valuable since they can be connected to the different levels of transfection efficiency hitherto evidenced.


Assuntos
Ácidos Nucleicos , Polietilenoimina , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Ácidos Nucleicos/genética , Polímeros , Transfecção
5.
Int J Biol Macromol ; 169: 330-341, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310092

RESUMO

Vancomycin-loaded N,N-dodecyl,methyl-polyethylenimine nanoparticles coated with hyaluronic acid (VCM-DMPEI nanoparticles/HA) were synthesized as an adjuvant for the treatment of bacterial endophthalmitis. The nanoparticles were formulated by experimental statistical design, thoroughly characterized, and evaluated in terms of bactericidal activity and both in vitro and in vivo ocular biocompatibility. The VCM-DMPEI nanoparticles/HA were 154 ± 3 nm in diameter with a 0.197 ± 0.020 polydispersity index; had a + 26.4 ± 3.3 mV zeta potential; exhibited a 93% VCM encapsulation efficiency; and released 58% of the encapsulated VCM over 96 h. VCM and DMPEI exhibited a synergistic bactericidal effect. The VCM-DMPEI nanoparticles/HA were neither toxic to ARPE-19 cells nor irritating to the chorioallantoic membrane. Moreover, the VCM-DMPEI nanoparticles/HA did not induce modifications in retinal functions, as determined by electroretinography, and in the morphology of the ocular tissues. In conclusion, the VCM-DMPEI nanoparticles/HA may be a useful therapeutic adjuvant to treat bacterial endophthalmitis.


Assuntos
Endoftalmite/tratamento farmacológico , Polietilenoimina/análogos & derivados , Vancomicina/farmacologia , Antibacterianos/farmacologia , Linhagem Celular , Portadores de Fármacos , Liberação Controlada de Fármacos , Olho/efeitos dos fármacos , Humanos , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Nanopartículas , Tamanho da Partícula , Polietilenoimina/química , Polietilenoimina/farmacologia , Vancomicina/química
6.
Acta Pharm Sin B ; 10(11): 2075-2109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33304780

RESUMO

In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.

7.
Talanta ; 200: 186-192, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31036172

RESUMO

In this work, different paper surface modification strategies were compared to obtain an amine functionalized SBA-15 (N-SBA-15) composite for paper-based device development. The synthesized N-SBA-15 was characterized by N2 adsorption-desorption isotherm, and infrared spectroscopy (FTIR), and it was incorporated to different polymer matrices (κ-carrageenan (CA), polyvinyl alcohol (PVA) and polyethylenimine (PEI)) for the development of the composite modified paper-based device. The retention, interactions, and morphology of the obtained composites were investigated by absorbance measurement, FTIR and scanning electron microscopy (SEM), respectively. To demonstrate the applicability of the modified paper-based device, ascorbic acid (AA) quantification was carried out. Horseradish peroxidase (HRP) was immobilized onto the modified paper surface. HRP in the presence of H2O2 catalyzes the oxidation of 10-acetyl-3,7-dyhidroxyphenoxazine (ADHP) to highly fluorescent resorufin, which was measured by LIF detector. Thus, when AA was added to the solution, it decreases the relative fluorescence signal proportionally to the AA concentration. The linear range from 50 nmol L-1 to 1500 nmol L-1 and a detection limit of 15 nmol L-1 were obtained for AA quantitation. The obtained results allowed us to conclude that N-SBA-15/PEI composite could be considered an excellent choice for the paper-based device modification procedure due to its inherent simplicity, low cost, and sensitivity.


Assuntos
Ácido Ascórbico/análise , Papel , Polímeros/química , Dióxido de Silício/química , Adsorção , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Nitrogênio/química , Tamanho da Partícula , Dióxido de Silício/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
8.
Cytotechnology ; 69(4): 655-665, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28321779

RESUMO

The development of efficient transfection protocols for livestock cells is crucial for implementation of cell-based transgenic methods to produce genetically modified animals. We synthetized fully deacylated linear 22, 87 and 217 kDa polyethylenimine (PEI) nanoparticles and compared their transfection efficiency and cytotoxicity to commercial branched 25 kDa PEI and linear 58 kDa poly(allylamine) hydrochloride. We studied the effect of PEI size and presence of serum on transfection efficiency on primary cultures of bovine fetal fibroblasts and established cells lines (HEK 293 and Hep G2). We found that transfection efficiency was affected mainly by polymer/pDNA ratio and DNA concentration and in less extent by PEI MW. In bovine fibroblast, preincubation of PEI nanoparticles with fetal bovine serum (FBS) greatly increased percentage of cells expressing the transgene (up to 82%) while significantly decreased the polymer cytotoxic effect. 87 and 217 kDa PEI rendered the highest transfection rates in HEK 293 and Hep G2 cell lines (>50% transfected cells) with minimal cell toxicity. In conclusion, our results indicate that fully deacylated PEI of 87 and 217 kDa are useful DNA vehicles for non-viral transfection of primary cultures of bovine fetal fibroblast and HEK 293 and Hep G2 cell lines.

9.
Braz. arch. biol. technol ; Braz. arch. biol. technol;58(6): 923-928, Nov.-Dec. 2015. graf
Artigo em Inglês | LILACS | ID: lil-766966

RESUMO

ABSTRACT Lentiviral vector-mediated gene transfer offers several advantages over other gene delivery vectors when considering gene and cell therapy applications. However, using these therapies in clinical applications involves large-scale vector production in an efficient and cost-effective manner. Here we describe a high yield production of a lentivirus encoding recombinant factor VIII in a scalable and GMP-compliant culture system, based on serum free suspension cultures and transient transfection with an inexpensive reagent, polyethylenimine (PEI), reaching a total viral yield of 2.48x108 particles.

10.
Enzyme Microb Technol ; 60: 1-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24835093

RESUMO

Lecitase Ultra has been immobilized on cyanogen bromide agarose (via covalent attachment) and on octyl agarose (via physical adsorption on the hydrophobic support by interfacial activation). Both immobilized preparations have been incubated in dextran sulfate (DS) or polyethylenimine (PEI) solutions to coat the enzyme surface. Then, the activity versus different substrates and under different experimental conditions was evaluated. The PEI coating generally produced a significant increase in enzyme activity, in some cases even by more than a 30-fold factor (using the octyl-Lecitase at pH 5 in the hydrolysis of methyl phenyl acetate). In opposition, the DS coating usually produced some negative effects on the enzyme activity. The rate of irreversible inhibition of the covalent preparation using diethyl p-nitrophenylphosphate did not increase after PEI coating suggesting that the increase in Lecitase activity is not a consequence of the stabilization of the open form of Lecitase. Moreover, the coating greatly increased the stability of the immobilized Lecitase, for example using DS and the covalent preparation, the half-life was increased by a 30-fold factor in 30% acetonitrile. The stabilizing effect was not found in all cases, in certain cases even a certain destabilization is found (e.g., octyl-Lecitase-DS at pH 7). Thus, the effects of the ionic polymer coating strongly depend on the substrate, experimental conditions and immobilization technique employed.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Fosfolipases A1/química , Fosfolipases A1/metabolismo , Biotecnologia , Catálise , Materiais Revestidos Biocompatíveis/química , Brometo de Cianogênio , Sulfato de Dextrana , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Polietilenoimina , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sefarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA