Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.482
Filtrar
1.
Talanta ; 278: 126357, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38959669

RESUMO

Methamphetamine (MA) is one of the most virulent illicit drugs that can be synthesized from household materials leading to its prevalent trafficking and local manufacturing in clandestine drug laboratories (clan labs). The significant problems of tracing MA in clan labs and monitoring drug abusers lie in the lag time between sample collection and analysis and the number of tests done. Capillary electrophoresis (CE) is a rapid separation technique amenable to miniaturization and field testing. Herein, we developed a simple transient isotachophoretic (tITP)-CE method to detect MA and its precursor pseudoephedrine (PSE) in clan labs and non-invasive biological fluids. The method was implemented on the ETD-100, a commercial fully automated portable CE instrument with an integrated swab-based extraction system. Within 2 min of insertion of the swab, MA and PSE were automatically extracted with a leading electrolyte (LE) and then separated on covalently modified capillaries. The ETD-100 showed a limit of detection (LOD) and quantification (LOQ) of MA 0.02 and 0.05 µg/swab and 0.02 and 0.06 µg/swab of PSE, with an enhancement factor of 118 and 328, respectively, when compared to a normal non-tITP injection. The intra and inter-day relative standard deviation in terms of migration time were in the range of 0.75-1.93 % for both MA and PSE and were 2.0-2.4 % for both MA and PSE peak height. The method was demonstrated with the detection of spiked MA and PSE on different household materials as well as in non-invasive biological fluids with a recovery above 60 %.

2.
Mikrochim Acta ; 191(8): 446, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963446

RESUMO

The stability of black phosphorene (BP) and its preparation and modification for developing and applying devices have become a hot topic in the interdisciplinary field. We propose ultrasound-electrochemistry co-assisted liquid-phase exfoliation as an eco-friendly one-step method to prepare gold-silver bimetallic nanoparticles (Au-AgNPs)-decorated BP nanozyme for smartphone-based portable sensing of 4-nitrophenol (4-NP) in different water sources. The structure, morphology, composition, and properties of Au-AgNPs-BP nanozyme are characterized by multiple instrumental analyses. Bimetallic salts are induced to efficiently occupy oxidative sites of BP to form highly stable Au-AgNPs-BP nanozyme and guarantee the integrity of the lamellar BP. The electrochemistry shortens the exfoliation time of the BP nanosheet and contributes to the loading efficiency of bimetallic nanoparticles on the BP nanosheet. Au-AgNPs-BP-modified screen-printed carbon electrode coupled with palm-sized smartphone-controlled wireless electrochemical analyzer as a portable wireless intelligent sensing platform was applied to the determination of 4-NP in a linear range of 0.6-10 µM with a limit of detection of 63 nM. It enables on-site determination of 4-NP content in lake water, river water, and irrigation ditch water. This work will provide a reference for an eco-friendly one-step preparation of bimetallic nanoparticle-decorated graphene-like materials as nanozymes and their smartphone-based portable sensing application outdoors.

3.
J Med Primatol ; 53(4): e12720, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958239

RESUMO

BACKGROUND: Hematologic and blood biochemical values are key tools for assessing primate health. A long-term behavioral study of howler monkeys at a single site (La Pacífica, Guanacaste, Costa Rica), afforded the opportunity to develop baseline values for a large group of animals, evaluating differences between adult males and females and comparing to a report in the same population two decades later. METHODS: In 1998, 64 free-ranging mantled howler monkeys were anesthetized and sampled for hematologic and biochemical analysis. RESULTS: Blood analysis is reported for 29 adult females, 9 juvenile females, 19 adult males and 3 juvenile males. Four adults were excluded due to external injury or disease. There were few significant differences between adult females, juvenile females, and adult males. CONCLUSIONS: Baseline blood parameters are useful for determining normal values for howler monkey populations. The values for total protein, blood urea nitrogen, glucose, liver enzymes and potassium differed from a later study in 2019 may indicate changes that are influencing howler monkey health.


Assuntos
Alouatta , Análise Química do Sangue , Animais , Alouatta/sangue , Alouatta/fisiologia , Costa Rica , Feminino , Masculino , Análise Química do Sangue/veterinária , Testes Hematológicos/veterinária , Valores de Referência
4.
Int Marit Health ; 75(2): 79-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949220

RESUMO

BACKGROUND: In confined waters, ships run a high risk of groundings, contact, sinkings and near misses. In such waters the maritime traffic is dense, the waterway is narrow, the depth is limited, and tides and currents are constantly changing. MATERIALS AND METHODS: From 2009-2019, 75 accidents were investigated in the estuary of the Seine. Weather conditions and perceived fatigue were studied. From May to June 2020, 114 seafarers, 34 pilots and 80 captains, responded to a questionnaire focusing on the use of Pilot Portable Units (PPU) and Electronic Chart Display Information Systems (ECDIS). RESULTS: The 75 accidents corresponded to an average of 6.8 ± 3.2 accidents per year. Groundings were the most frequent accidents (35%, n = 26) followed by contact accidents with the quayside (25%, n = 19), between ships or tugs while manoeuvring (8%, n = 6) or while sailing (1%, n = 1). There was no loss of vessels nor fatalities of crew members. In poor weather conditions, there were 76% more accidents than in normal conditions (4.4 ± 2.5 accidents/10,000 movements versus 2.5 ± 1.9 accidents/10,000 movements, p < 0.03). Almost all the accidents (96%) were related to human errors of judgment (81%), or negligence (53%), or both (39). Perceived fatigue was probably in cause in 6 accidents. Only 3 accidents were related to mechanical causes. Through the questionnaires, 69% of the pilots complained of difficulties in mastering the devices and software. They felt distracted by alarms which affected their attention while navigating. They requested training on a simulator. Concerning ship captains, 83% felt comfortable with ECDIS devices yet only 20% were able to configure the ECDIS correctly. CONCLUSIONS: In the Seine estuary, 75 accidents occurred within the 11 year-study. Risk factors were poor weather conditions and human error. PPU and ECDIS were considered as useful tools in the prevention of accidents. However, pilots and captains requested more thorough training in their use.


Assuntos
Acidentes de Trabalho , Navios , Humanos , Acidentes de Trabalho/estatística & dados numéricos , França/epidemiologia , Adulto , Inquéritos e Questionários , Tempo (Meteorologia) , Masculino , Estuários , Pilotos/estatística & dados numéricos , Medicina Naval , Fadiga/epidemiologia , Feminino , Pessoa de Meia-Idade
5.
EJNMMI Phys ; 11(1): 57, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976184

RESUMO

BACKGROUND: Portable gamma cameras are being developed for nuclear medicine procedures such as thyroid scintigraphy. This article introduces Seracam® - a new technology that combines small field of view gamma imaging with optical imaging - and reports its performance and suitability for small organ imaging. METHODS: The count rate capability, uniformity, spatial resolution, and sensitivity for 99mTc are reported for four integrated pinhole collimators of nominal sizes of 1 mm, 2 mm, 3 mm and 5 mm. Characterisation methodology is based on NEMA guidelines, with some adjustments necessitated by camera design. Two diagnostic scenarios - thyroid scintigraphy and gastric emptying - are simulated using clinically relevant activities and geometries to investigate application-specific performance. A qualitative assessment of the potential benefits and disadvantages of Seracam is also provided. RESULTS: Seracam's performance across the measured characteristics is appropriate for small field of view applications in nuclear medicine. At an imaging distance of 50 mm, corresponding to a field of view of 77.6 mm × 77.6 mm, spatial resolution ranged from 4.6 mm to 26 mm and sensitivity from 3.6 cps/MBq to 52.2 cps/MBq, depending on the collimator chosen. Results from the clinical simulations were particularly promising despite the challenging scenarios investigated. The optimal collimator choice was strongly application dependent, with gastric emptying relying on the higher sensitivity of the 5 mm pinhole whereas thyroid imaging benefitted from the enhanced spatial resolution of the 1 mm pinhole. Signal to noise ratio in images was improved by pixel binning. Seracam has lower measured sensitivity when compared to a traditional large field of view gamma camera, for the simulated applications this is balanced by advantages such as high spatial resolution, portability, ease of use and real time gamma-optical image fusion and display. CONCLUSION: The results show that Seracam has appropriate performance for small organ 99mTc imaging. The results also show that the performance of small field of view systems must be considered holistically and in clinically appropriate scenarios.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38980927

RESUMO

Development of efficient portable sensors for accurately detecting biomarkers is crucial for early disease diagnosis, yet remains a significant challenge. To address this need, we introduce the enhanced luminescence lateral-flow assay, which leverages highly luminescent upconverting nanoparticles (UCNPs) alongside a portable reader and a smartphone app. The sensor's efficiency and versatility were shown for kidney health monitoring as a proof of concept. We engineered Er3+- and Tm3+-doped UCNPs coated with multiple layers, including an undoped inert matrix shell, a mesoporous silica shell, and an outer layer of gold (UCNP@mSiO2@Au). These coatings synergistically enhance emission by over 40-fold and facilitate biomolecule conjugation, rendering UCNP@mSiO2@Au easy to use and suitable for a broad range of bioapplications. Employing these optimized nanoparticles in lateral-flow assays, we successfully detected two acute kidney injury-related biomarkers─kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL)─in urine samples. Using our sensor platform, KIM-1 and NGAL can be accurately detected and quantified within the range of 0.1 to 20 ng/mL, boasting impressively low limits of detection at 0.28 and 0.23 ng/mL, respectively. Validating our approach, we analyzed clinical urine samples, achieving biomarker concentrations that closely correlated with results obtained via ELISA. Importantly, our system enables biomarker quantification in less than 15 min, underscoring the performance of our novel UCNP-based approach and its potential as reliable, rapid, and user-friendly diagnostics.

7.
ChemSusChem ; : e202401008, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987226

RESUMO

Healthcare facilities produce millions of tons of waste annually, with a significant portion consisting of diagnostic plasticware. Here, we introduce a new detection platform that completely replaces traditional assay plates with a piece of membrane, offering a much greener and more sustainable alternative. The membrane, integrated within the portable vortex fluidic device (P-VFD), enables rapid detection of a clinically relevant protein biomarker, urinary p75ECD. This biomarker is utilized to evaluate the prognosis, disease severity, and progression of amyotrophic lateral sclerosis (ALS). This assay has a limit-of-detection (LOD) of 4.03 pg, which is comparable to the plate-based assay (2.24 pg) and has been optimized through a full factorial design of experiments (DOE). P-VFD has great potential in quantifying p75ECD in human biofluids and can significantly reduce the assay time to 5 min compared to the current plate-based p75ECD ELISA assay (3 days), with at least a 4.4-fold reduction in the usage of the detection antibody.

8.
Doc Ophthalmol ; 149(1): 23-45, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955958

RESUMO

PURPOSE: Multiple sclerosis (MS) is a neuro-inflammatory disease affecting the central nervous system (CNS), where the immune system targets and damages the protective myelin sheath surrounding nerve fibers, inhibiting axonal signal transmission. Demyelinating optic neuritis (ON), a common MS symptom, involves optic nerve damage. We've developed NeuroVEP, a portable, wireless diagnostic system that delivers visual stimuli through a smartphone in a headset and measures evoked potentials at the visual cortex from the scalp using custom electroencephalography electrodes. METHODS: Subject vision is evaluated using a short 2.5-min full-field visual evoked potentials (ffVEP) test, followed by a 12.5-min multifocal VEP (mfVEP) test. The ffVEP evaluates the integrity of the visual pathway by analyzing the P100 component from each eye, while the mfVEP evaluates 36 individual regions of the visual field for abnormalities. Extensive signal processing, feature extraction methods, and machine learning algorithms were explored for analyzing the mfVEPs. Key metrics from patients' ffVEP results were statistically evaluated against data collected from a group of subjects with normal vision. Custom visual stimuli with simulated defects were used to validate the mfVEP results which yielded 91% accuracy of classification. RESULTS: 20 subjects, 10 controls and 10 with MS and/or ON were tested with the NeuroVEP device and a standard-of-care (SOC) VEP testing device which delivers only ffVEP stimuli. In 91% of the cases, the ffVEP results agreed between NeuroVEP and SOC device. Where available, the NeuroVEP mfVEP results were in good agreement with Humphrey Automated Perimetry visual field analysis. The lesion locations deduced from the mfVEP data were consistent with Magnetic Resonance Imaging and Optical Coherence Tomography findings. CONCLUSION: This pilot study indicates that NeuroVEP has the potential to be a reliable, portable, and objective diagnostic device for electrophysiology and visual field analysis for neuro-visual disorders.


Assuntos
Potenciais Evocados Visuais , Esclerose Múltipla , Neurite Óptica , Humanos , Potenciais Evocados Visuais/fisiologia , Neurite Óptica/diagnóstico , Neurite Óptica/fisiopatologia , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/fisiopatologia , Feminino , Masculino , Adulto , Campos Visuais/fisiologia , Córtex Visual/fisiopatologia , Eletroencefalografia/instrumentação , Pessoa de Meia-Idade , Projetos Piloto , Estimulação Luminosa
9.
Pulm Ther ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822956

RESUMO

INTRODUCTION: Long-term oxygen therapy (LTOT) is reported to improve survival in patients with chronic respiratory failure. We aimed to describe effectiveness, burden, and cost of illness of patients treated with portable oxygen concentrators (POC) compared to other LTOT options. METHODS: This retrospective comparative analysis included adult patients with chronic respiratory insufficiency and failure (CRF) upon a first delivery of LTOT between 2014 and 2019 and followed until December 2020, based on the French national healthcare database SNDS. Patients using POC, alone or in combination, were compared with patients using stationary concentrators alone (aSC), or compressed tanks (CTC) or liquid oxygen (LO2), matched on the basis of age, gender, comorbidities, and stationary concentrator use. RESULTS: Among 244,719 LTOT patients (mean age 75 ± 12, 48% women) included, 38% used aSC, 46% mobile oxygen in the form of LO2 (38%) and POC (18%), whereas 9% used CTC. The risk of death over the 72-month follow-up was estimated to be 13%, 15%, and 12% lower for patients in the POC group compared to aSC, CTC, and LO2, respectively. In the POC group yearly mean total costs per patient were 5% higher and 4% lower compared to aSC and CTC groups, respectively, and comparable in the LO2 group. The incremental cost-effectiveness ratio (ICER) of POC was €8895, €6288, and €13,152 per year of life gained compared to aSC, CTC, and LO2, respectively. CONCLUSION: Within the POC group, we detected an association between higher mobility (POCs autonomy higher than 5 h), improved survival, lower costs, and ICER - €6 238, compared to lower mobility POCs users.

10.
J Chromatogr A ; 1730: 465101, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38941795

RESUMO

The greater and more widespread use of chemicals, either from industry or daily use, is leading to an increase in the discharge of these substances into the environment. Some of these are known to be hazardous to humans and the environment and are regulated, but there is a large and increasing number of substances which pose a potential risk even at low concentration and are not controlled. In this context, new techniques and methodologies are being developed to deal with this concern. Miniaturized liquid chromatography (LC) emerges as a greener and more sensitive alternative to conventional LC. Furthermore, advances in instrument miniaturization have made possible the development of portable LC instrumentation which may become a promising tool for in-situ monitoring. This work reviews the environmental applications of miniaturized LC over the last 15 years and discusses the different instrumentation, including off- and on-line pretreatment techniques, chromatographic conditions, and contributions to the environmental knowledge.

11.
Ergonomics ; : 1-20, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916114

RESUMO

This study examines the barriers to integrating portable Magnetic Resonance Imaging (MRI) systems into ambulance services to enable effective triaging of patients to the appropriate hospitals for timely stroke care and potentially reduce door-to-needle time for thrombolytic administration. The study employs a qualitative methodology using a digital twin of the patient handling process developed and demonstrated through semi-structured interviews with 18 participants, including 11 paramedics from an Emergency Medical Services system and seven neurologists from a tertiary stroke care centre. The interview transcripts were thematically analysed to determine the barriers based on the Systems Engineering Initiative for Patient Safety framework. Key barriers include the need for MRI operation skills, procedural complexities in patient handling, space constraints, and the need for training and policy development. Potential solutions are suggested to mitigate these barriers. The findings can facilitate implementing MRI systems in ambulances to expedite stroke treatment.


This study investigates the challenges of integrating portable MRI systems into ambulances for faster stroke care. It identifies key barriers such as operational skills, procedural complexities, space constraints, and policy development needs, and offers a few solutions to improve emergency stroke treatment.

12.
Adv Colloid Interface Sci ; 331: 103199, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38909548

RESUMO

Recently, the availability of point-of-care sensor systems has led to the rapid development of smart and portable devices for the detection of hazardous analytes. The rapid flow of artificially ripened fruits into the market is associated with an elevated risk to human life, agriculture, and the ecosystem due to the use of artificial fruit ripening agents (AFRAs). Accordingly, there is a need for the development of "Point-of-care Sensors" to detect AFRAs due to several advantages, such as simple operation, promising detection mechanism, higher selectivity and sensitivity, compact, and portable. Traditional detection approaches are time-consuming and inappropriate for on-the-spot analyses. Presented comprehensive review aimed to reveal how such technology has systematically evolved over time (through conventional, advanced, and portable smart techniques) detection detect AFRA, till date. Moreover, focuses and highlights a framework of initiatives undertaken for technological advancements in the development of smart the portable detection techniques (kits) for the onsite detection of AFRAs in fruits with in-depth discussion over sensing mechanism and analytical performance of the sensing technology. Notably, colorimetric detection methods have the greatest potential for real-time monitoring of AFRA and its residues because they are easy to assemble, have a high level of selectivity and sensitivity, and can be read by the human eye independently. This study sought to differentiate between traditional credible strategies by presenting new prospects, perceptions, and challenges related to portable devices. This review provides systematic framework of advances in portable field recognition strategies for the on-spot AFRA detection in fruits and critical information for development of new paper-based portable sensors for fruit diagnostic sectors.

13.
Food Chem ; 455: 139876, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823143

RESUMO

Enrofloxacin (ENR) residues in animal-derived food and water threaten human health. Simple, low-cost and on-site detection methods are urgently needed. Blue emitting carbon quantum dots (CQDs) and orange rhodamine B (RhB) were used as recognition and reference signals, respectively, to construct a ratiometric fluorescence sensor. After the addition of ENR, the color of the sensor changed from orange to blue because hydrogen bonding induced a considerable increase in CQDs fluorescence. Based on this mechanism, a simple and low cost on-site portable sensing platform was constructed, which integrated a stable UV light strip and a smartphone with voice-controlled phototaking function and an RGB app. The t-test results of spiked ENR recoveries for diluted milk, honey and drinking water revealed no significant differences between the ratiometric fluorescent sensor and portable sensing platform. Thus, this portable sensing platform provides a novel strategy for on-site quantification of quinolone antibiotics in foodstuffs and environmental water.


Assuntos
Antibacterianos , Enrofloxacina , Contaminação de Alimentos , Ligação de Hidrogênio , Leite , Pontos Quânticos , Smartphone , Enrofloxacina/análise , Pontos Quânticos/química , Leite/química , Contaminação de Alimentos/análise , Antibacterianos/análise , Animais , Fluorescência , Poluentes Químicos da Água/análise , Mel/análise , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Água Potável/análise , Carbono/química , Rodaminas/química
14.
Food Chem ; 455: 139822, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824730

RESUMO

So far, compliance with ISO 3632 standard specifications for top-quality saffron guarantees good agricultural and post-harvest production practices. Tracking early-stage oxidation remains challenging. Our study aims to address this issue by exploring the visible, fluorescence, and near-infrared spectra of category I saffron. Using a multi-spectral sensor, we tested fresh and artificially aged saffron in powder form. High autofluorescence intensities at 600-700 nm allowed calibration for the 'content of aged saffron'. Samples with minimum coloring strength (200-220 units) were classified as 70% aged, while those exceeding maximum aroma strength (50 units) as 100% aged. Consistent patterns across origin, age, and processing history indicated potential for objectively assessing early-oxidation markers. Further analyses uncovered multiple contributing fluorophores, including cis-apocarotenoids, correlated with FTIR-based aging markers. Our findings underscore that sensing autofluorescence of traded saffron presents an innovative quality diagnostic approach, paving new research pathways for assessing the remaining shelf-life along its supply chain.


Assuntos
Crocus , Crocus/química , Crocus/metabolismo , Fluorescência , Oxirredução , Armazenamento de Alimentos , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Mikrochim Acta ; 191(7): 394, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877187

RESUMO

Sulfur-doped BCNO quantum dots (S-BCNO QDs) emitting green fluorescence were prepared by elemental doping method. The ratiometric fluorescence probe with dual emissions was simply established by mixed S-BCNO QDs with gold nanoclusters (GSH-Au NCs). Because the emission spectrum of Au NCs (donor) at 615 nm overlapped well with the ultraviolet absorption of malachite green (MG), fluorescence resonance energy transfer (FRET) can be achieved. When the concentration of MG increased, the fluorescence intensity (F495) of S-BCNO QDs decreased slowly, while the fluorescence intensity (F615) of Au NCs decreased sharply. The fluorescence intensity ratio of F615/F495 decreased with the increase of MG. By plotting the F615/F495 values against MG concentration, a sensitive and rapid detection of MG was possible with a wide detection range (0.1-50 µM) and a low detection limit of 10 nM. Due to the accompanying fluorescence color change from pink to blue-green, it can be used for visual detection. A three dimensional-printing device utilizing digital image colorimetry to capture color changes through the built-in camera, enables quantitative detection of MG with a good linearity between the values of red/green ratio and MG concentrations at the range 1-50 µM. This sensing platform had a range of advantages, including high cost-effectiveness, portability, ease of operation, and high sensitivity. Furthermore, the sensing platform was successfully applied to the detection of MG in real water sample and fish samples, thereby verifying the reliability and effectiveness of this sensing platform in water quality monitoring and food safety.

16.
Mikrochim Acta ; 191(7): 396, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877161

RESUMO

The development of a portable analytical procedure is described for rapid sequential detection and quantification of the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX) in forensic samples using a graphite sheet (GS). A single GS platform works as a collector of explosive residues and detector after its assembly into a 3D-printed cell. The detection strategy is based on cyclic square-wave stripping voltammetry. The cathodic scan from + 0.1 to -1.0 V with accumulation at 0.0 V enables the TNT detection (three reduction peaks), and the anodic scan from + 0.2 to + 1.55 V with accumulation at -0.9 V provides the RDX detection (two oxidation processes). Low detection limit values (0.1 µmol L-1 for TNT and 2.4 µmol L-1 for RDX) and wide linear ranges (from 1 to 150 µmol L-1 for TNT and from 20 to 300 µmol L-1 for RDX) were obtained. The sensor did not respond to pentaerythritol tetranitrate (PETN), which was evaluated as a potential interferent, because plastic explosives contain mixtures of TNT, RDX, and PETN. The GS electrode was also evaluated as a collector of TNT and RDX residues spread on different surfaces to simulate forensic scenarios. After swiping over different surfaces (metal, granite, wood, cloths, hands, money bills, and cellphone), the GS electrode was assembled in the 3D-printed cell ready to measure both explosives by the proposed method. In all cases, the presence of TNT and RDX was confirmed, attesting the reliability of the proposed device to act as collector and sensor.

17.
J Food Sci ; 89(7): 3935-3949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865253

RESUMO

Food analysis is significantly important in monitoring food quality and safety for human health. Traditional methods for food detection mainly rely on benchtop instruments and require a certain amount of analysis time, which promotes the development of portable sensors. Portable sensing methods own many advantages over traditional techniques such as flexibility and accessibility in diverse environments, real-time monitoring, cost-effectiveness, and rapid deployment. This review focuses on the portable approaches based on carbon dots (CDs) for food analysis. CDs are zero-dimensional carbon-based material with a size of less than 10 nm. In the manner of sensing, CDs exhibit rich functional groups, low biotoxicity, good biocompatibility, and excellent optical properties. Furthermore, there are many methods for the synthesis of CDs using various precursor materials. The incorporation of CDs into food science and engineering for enhancing food safety control and risk assessment shows promising prospects.


Assuntos
Carbono , Análise de Alimentos , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Inocuidade dos Alimentos/métodos , Pontos Quânticos/química , Humanos
18.
JMIR Biomed Eng ; 9: e51901, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875673

RESUMO

BACKGROUND: Obstructive sleep apnea/hypopnea syndrome (OSAHS) is a prevalent condition affecting a substantial portion of the global population, with its prevalence increasing over the past 2 decades. OSAHS is characterized by recurrent upper airway (UA) closure during sleep, leading to significant impacts on quality of life and heightened cardiovascular and metabolic morbidity. Despite continuous positive airway pressure (CPAP) being the gold standard treatment, patient adherence remains suboptimal due to various factors, such as discomfort, side effects, and treatment unacceptability. OBJECTIVE: Considering the challenges associated with CPAP adherence, an alternative approach targeting the UA muscles through myofunctional therapy was explored. This noninvasive intervention involves exercises of the lips, tongue, or both to improve oropharyngeal functions and mitigate the severity of OSAHS. With the goal of developing a portable device for home-based myofunctional therapy with continuous monitoring of exercise performance and adherence, the primary outcome of this study was the degree of completion and adherence to a 4-week training session. METHODS: This proof-of-concept study focused on a portable device that was designed to facilitate tongue and lip myofunctional therapy and enable precise monitoring of exercise performance and adherence. A clinical study was conducted to assess the effectiveness of this program in improving sleep-disordered breathing. Participants were instructed to perform tongue protrusion, lip pressure, and controlled breathing as part of various tasks 6 times a week for 4 weeks, with each session lasting approximately 35 minutes. RESULTS: Ten participants were enrolled in the study (n=8 male; mean age 48, SD 22 years; mean BMI 29.3, SD 3.5 kg/m2; mean apnea-hypopnea index [AHI] 20.7, SD 17.8/hour). Among the 8 participants who completed the 4-week program, the overall compliance rate was 91% (175/192 sessions). For the tongue exercise, the success rate increased from 66% (211/320 exercises; SD 18%) on the first day to 85% (272/320 exercises; SD 17%) on the last day (P=.05). AHI did not change significantly after completion of training but a noteworthy correlation between successful lip exercise improvement and AHI reduction in the supine position was observed (Rs=-0.76; P=.03). These findings demonstrate the potential of the device for accurately monitoring participants' performance in lip and tongue pressure exercises during myofunctional therapy. The diversity of the training program (it mixed exercises mixed training games), its ability to provide direct feedback for each exercise to the participants, and the easy measurement of treatment adherence are major strengths of our training program. CONCLUSIONS: The study's portable device for home-based myofunctional therapy shows promise as a noninvasive alternative for reducing the severity of OSAHS, with a notable correlation between successful lip exercise improvement and AHI reduction, warranting further development and investigation.

19.
J Sch Health ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890148

RESUMO

BACKGROUND: The US government allocated over $2.5 billion in "Elementary and Secondary School Emergency Relief (ESSER)" funds to Washington State for COVID-19 response and ventilation improvements. Despite available funding, gaps persist in supporting schools to successfully use portable air cleaners (PACs). We evaluated PAC needs within King County, Washington and characterized factors influencing schools' purchase and use of PACs. METHODS: Public Health-Seattle & King County (PHSKC) assessed school's ventilation systems and IAQ improvements through a survey (N = 17). Separately, semi-structured interviews (N = 13) based on the technology acceptance model (TAM) were conducted with school personnel. A thematic analysis using inductive and deductive coding was conducted and logistic regression models assessed the predictive capability of the TAM. RESULTS: The PHSKC survey findings informed our recommendations. Positive attitudes, knowledge, and beliefs in ease of use and effectiveness of PACs were facilitators to PAC use. While barriers included a lack of training, education, and concerns about PAC maintenance and sustainability. TAM constructs of perceived usefulness (PU) and perceived ease of use (PEU) were predictive of having the intention to use PACs in schools. CONCLUSIONS: There is a critical need for solutions to circumvent challenges to implementing PACs in schools. This characterization provides insight for promoting PAC use in IAQ-impacted schools.

20.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894058

RESUMO

The integration of artificial intelligence (AI) models in the classification of electromyographic (EMG) signals represents a significant advancement in the design of control systems for prostheses. This study explores the development of a portable system that classifies the electrical activity of three shoulder muscles in real time for actuator control, marking a milestone in the autonomy of prosthetic devices. Utilizing low-power microcontrollers, the system ensures continuous EMG signal recording, enhancing user mobility. Focusing on a case study-a 42-year-old man with left shoulder disarticulation-EMG activity was recorded over two days using a specifically designed electronic board. Data processing was performed using the Edge Impulse platform, renowned for its effectiveness in implementing AI on edge devices. The first day was dedicated to a training session with 150 repetitions spread across 30 trials and three different movements. Based on these data, the second day tested the AI model's ability to classify EMG signals in new movement executions in real time. The results demonstrate the potential of portable AI-based systems for prosthetic control, offering accurate and swift EMG signal classification that enhances prosthetic user functionality and experience. This study not only underscores the feasibility of real-time EMG signal classification but also paves the way for future research on practical applications and improvements in the quality of life for prosthetic users.


Assuntos
Eletromiografia , Aprendizado de Máquina , Ombro , Humanos , Eletromiografia/métodos , Adulto , Masculino , Ombro/fisiologia , Músculo Esquelético/fisiologia , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...