Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
1.
IEEE Sens J ; 24(5): 6469-6481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39309301

RESUMO

In this paper, we propose mmPose-FK, a novel millimeter wave (mmWave) radar-based pose estimation method that employs a dynamic forward kinematics (FK) approach to address the challenges posed by low resolution, specularity, and noise artifacts commonly associated with mmWave radars. These issues often result in unstable joint poses that vibrate over time, reducing the effectiveness of traditional pose estimation techniques. To overcome these limitations, we integrate the FK mechanism into the deep learning model and develop an end-to-end solution driven by data. Our comprehensive experiments using various matrices and benchmarks highlight the superior performance of mmPose-FK, especially when compared to our previous research methods. The proposed method provides more accurate pose estimation and ensures increased stability and consistency, which underscores the continuous improvement of our methodology, showcasing superior capabilities over its antecedents. Moreover, the model can output joint rotations and human bone lengths, which could be further utilized for various applications such as gait parameter analysis and height estimation. This makes mmPose-FK a highly promising solution for a wide range of applications in the field of human pose estimation and beyond.

2.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39338702

RESUMO

Parkinson's disease (PD) is the second most common movement disorder in the world. It is characterized by motor and non-motor symptoms that have a profound impact on the independence and quality of life of people affected by the disease, which increases caregivers' burdens. The use of the quantitative gait data of people with PD and deep learning (DL) approaches based on gait are emerging as increasingly promising methods to support and aid clinical decision making, with the aim of providing a quantitative and objective diagnosis, as well as an additional tool for disease monitoring. This will allow for the early detection of the disease, assessment of progression, and implementation of therapeutic interventions. In this paper, the authors provide a systematic review of emerging DL techniques recently proposed for the analysis of PD by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Scopus, PubMed, and Web of Science databases were searched across an interval of six years (between 2018, when the first article was published, and 2023). A total of 25 articles were included in this review, which reports studies on the movement analysis of PD patients using both wearable and non-wearable sensors. Additionally, these studies employed DL networks for classification, diagnosis, and monitoring purposes. The authors demonstrate that there is a wide employment in the field of PD of convolutional neural networks for analyzing signals from wearable sensors and pose estimation networks for motion analysis from videos. In addition, the authors discuss current difficulties and highlight future solutions for PD monitoring and disease progression.


Assuntos
Aprendizado Profundo , Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico , Marcha/fisiologia , Análise da Marcha/métodos , Dispositivos Eletrônicos Vestíveis , Qualidade de Vida
3.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39338700

RESUMO

Magnetic pose tracking is a non-contact, accurate, and occlusion-free method that has been increasingly employed to track intra-corporeal medical devices such as endoscopes in computer-assisted medical interventions. In magnetic pose-tracking systems, a nonlinear estimation algorithm is needed to recover the pose information from magnetic measurements. In existing pose estimation algorithms such as the extended Kalman filter (EKF), the 3-DoF orientation in the S3 manifold is normally parametrized as unit quaternions and simply treated as a vector in the Euclidean space, which causes a violation of the unity constraint of quaternions and reduces pose tracking accuracy. In this paper, a pose estimation algorithm based on the error-state Kalman filter (ESKF) is proposed to improve the accuracy and robustness of electromagnetic tracking systems. The proposed system consists of three electromagnetic coils for magnetic field generation and a tri-axial magnetic sensor attached to the target object for field measurement. A strategy of sequential coil excitation is developed to separate the magnetic fields from different coils and reject magnetic disturbances. Simulation and experiments are conducted to evaluate the pose tracking performance of the proposed ESKF algorithm, which is also compared with standard EKF and constrained EKF. It is shown that the ESKF can effectively maintain the quaternion unity and thus achieve a better tracking accuracy, i.e., a Euclidean position error of 2.23 mm and an average orientation angle error of 0.45°. The disturbance rejection performance of the electromagnetic tracking system is also experimentally validated.

4.
Sensors (Basel) ; 24(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39338750

RESUMO

(1) Background: As digital health technology evolves, the role of accurate medical-gloved hand tracking is becoming more important for the assessment and training of practitioners to reduce procedural errors in clinical settings. (2) Method: This study utilized computer vision for hand pose estimation to model skeletal hand movements during in situ aseptic drug compounding procedures. High-definition video cameras recorded hand movements while practitioners wore medical gloves of different colors. Hand poses were manually annotated, and machine learning models were developed and trained using the DeepLabCut interface via an 80/20 training/testing split. (3) Results: The developed model achieved an average root mean square error (RMSE) of 5.89 pixels across the training data set and 10.06 pixels across the test set. When excluding keypoints with a confidence value below 60%, the test set RMSE improved to 7.48 pixels, reflecting high accuracy in hand pose tracking. (4) Conclusions: The developed hand pose estimation model effectively tracks hand movements across both controlled and in situ drug compounding contexts, offering a first-of-its-kind medical glove hand tracking method. This model holds potential for enhancing clinical training and ensuring procedural safety, particularly in tasks requiring high precision such as drug compounding.


Assuntos
Mãos , Aprendizado de Máquina , Humanos , Mãos/fisiologia , Movimento/fisiologia , Luvas Protetoras , Gravação em Vídeo/métodos
5.
Heliyon ; 10(17): e36823, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263111

RESUMO

Human Pose Estimation (HPE) is a crucial step towards understanding people in images and videos. HPE provides geometric and motion information of the human body, which has been applied to a wide range of applications (e.g., human-computer interaction, motion analysis, augmented reality, virtual reality, healthcare, etc.). An extremely useful task of this kind is the 2D pose estimation of bedridden patients from infrared (IR) images. Here, the IR imaging modality is preferred due to privacy concerns and the need for monitoring both uncovered and covered patients at different levels of illumination. The major drawback of this research problem is the unavailability of covered examples, which are very costly to collect and time-consuming to label. In this work, a deep learning-based framework was developed for human sleeping pose estimation on covered images using only the uncovered training images. In the training scheme, two different image augmentation techniques, a statistical approach as well as a GAN-based approach, were explored for domain adaptation, where the statistical approach performed better. The accuracy of the model trained on the statistically augmented dataset was improved by 124 % as compared with the model trained on non-augmented images. To handle the scarcity of training infrared images, a transfer learning strategy was used by pre-training the model on an RGB pose estimation dataset, resulting in a further increment in accuracy of 4 %. Semi-supervised learning techniques, with a novel pose discriminator model in the loop, were adopted to utilize the unannotated training data, resulting in a further 3 % increase in accuracy. Thus, significant improvement has been shown in the case of 2D pose estimation from infrared images, with a comparatively small amount of annotated data and a large amount of unannotated data by using the proposed training pipeline powered by heavy augmentation.

6.
Front Artif Intell ; 7: 1425713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263525

RESUMO

Introduction: Falls have been acknowledged as a major public health issue around the world. Early detection of fall risk is pivotal for preventive measures. Traditional clinical assessments, although reliable, are resource-intensive and may not always be feasible. Methods: This study explores the efficacy of artificial intelligence (AI) in predicting fall risk, leveraging gait analysis through computer vision and machine learning techniques. Data was collected using the Timed Up and Go (TUG) test and JHFRAT assessment from MMU collaborators and augmented with a public dataset from Mendeley involving older adults. The study introduces a robust approach for extracting and analyzing gait features, such as stride time, step time, cadence, and stance time, to distinguish between fallers and non-fallers. Results: Two experimental setups were investigated: one considering separate gait features for each foot and another analyzing averaged features for both feet. Ultimately, the proposed solutions produce promising outcomes, greatly enhancing the model's ability to achieve high levels of accuracy. In particular, the LightGBM demonstrates a superior accuracy of 96% in the prediction task. Discussion: The findings demonstrate that simple machine learning models can successfully identify individuals at higher fall risk based on gait characteristics, with promising results that could potentially streamline fall risk assessment processes. However, several limitations were discovered throughout the experiment, including an insufficient dataset and data variation, limiting the model's generalizability. These issues are raised for future work consideration. Overall, this research contributes to the growing body of knowledge on fall risk prediction and underscores the potential of AI in enhancing public health strategies through the early identification of at-risk individuals.

7.
Sensors (Basel) ; 24(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275632

RESUMO

To accurately estimate the 6D pose of objects, most methods employ a two-stage algorithm. While such two-stage algorithms achieve high accuracy, they are often slow. Additionally, many approaches utilize encoding-decoding to obtain the 6D pose, with many employing bilinear sampling for decoding. However, bilinear sampling tends to sacrifice the accuracy of precise features. In our research, we propose a novel solution that utilizes implicit representation as a bridge between discrete feature maps and continuous feature maps. We represent the feature map as a coordinate field, where each coordinate pair corresponds to a feature value. These feature values are then used to estimate feature maps of arbitrary scales, replacing upsampling for decoding. We apply the proposed implicit module to a bidirectional fusion feature pyramid network. Based on this implicit module, we propose three network branches: a class estimation branch, a bounding box estimation branch, and the final pose estimation branch. For this pose estimation branch, we propose a miniature dual-stream network, which estimates object surface features and complements the relationship between 2D and 3D. We represent the rotation component using the SVD (Singular Value Decomposition) representation method, resulting in a more accurate object pose. We achieved satisfactory experimental results on the widely used 6D pose estimation benchmark dataset Linemod. This innovative approach provides a more convenient solution for 6D object pose estimation.

8.
Heliyon ; 10(16): e35929, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224340

RESUMO

A considerable number of vehicular accidents occur in low-millage zones like school streets, neighborhoods, and parking lots, among others. Therefore, the proposed work aims to provide a novel ADAS system to warn about dangerous scenarios by analyzing the driver's attention and the corresponding distances between the vehicle and the detected object on the road. This approach is made possible by concurrent Head Pose Estimation (HPE) and Object/Pedestrian Detection. Both approaches have shown independently their viable application in the automotive industry to decrease the number of vehicle collisions. The proposed system takes advantage of stereo vision characteristics for HPE by enabling the computation of the Euler Angles with a low average error for classifying the driver's attention on the road using neural networks. For Object Detection, stereo vision is used to detect the distance between the vehicle and the approaching object; this is made with a state-of-the-art algorithm known as YOLO-R and a fast template matching technique known as SoRA that provides lower processing times. The result is an ADAS system designed to ensure adequate braking time, considering the driver's attention on the road and the distances to objects.

9.
Technol Health Care ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39240596

RESUMO

BACKGROUND: In radiography procedures, radiographers' suboptimal positioning and exposure parameter settings may necessitate image retakes, subjecting patients to unnecessary ionizing radiation exposure. Reducing retakes is crucial to minimize patient X-ray exposure and conserve medical resources. OBJECTIVE: We propose a Digital Radiography (DR) Pre-imaging All-round Assistant (PIAA) that leverages Artificial Intelligence (AI) technology to enhance traditional DR. METHODS: PIAA consists of an RGB-Depth (RGB-D) multi-camera array, an embedded computing platform, and multiple software components. It features an Adaptive RGB-D Image Acquisition (ARDIA) module that automatically selects the appropriate RGB camera based on the distance between the cameras and patients. It includes a 2.5D Selective Skeletal Keypoints Estimation (2.5D-SSKE) module that fuses depth information with 2D keypoints to estimate the pose of target body parts. Thirdly, it also uses a Domain expertise (DE) embedded Full-body Exposure Parameter Estimation (DFEPE) module that combines 2.5D-SSKE and DE to accurately estimate parameters for full-body DR views. RESULTS: Optimizes DR workflow, significantly enhancing operational efficiency. The average time required for positioning patients and preparing exposure parameters was reduced from 73 seconds to 8 seconds. CONCLUSIONS: PIAA shows significant promise for extension to full-body examinations.

10.
Artigo em Inglês | MEDLINE | ID: mdl-39249618

RESUMO

Health professional education stands to gain substantially from collective efforts toward building video databases of skill performances in both real and simulated settings. An accessible resource of videos that demonstrate an array of performances - both good and bad-provides an opportunity for interdisciplinary research collaborations that can advance our understanding of movement that reflects technical expertise, support educational tool development, and facilitate assessment practices. In this paper we raise important ethical and legal considerations when building and sharing health professions education data. Collective data sharing may produce new knowledge and tools to support healthcare professional education. We demonstrate the utility of a data-sharing culture by providing and leveraging a database of cardio-pulmonary resuscitation (CPR) performances that vary in quality. The CPR skills performance database (collected for the purpose of this research, hosted at UK Data Service's ReShare Repository) contains videos from 40 participants recorded from 6 different angles, allowing for 3D reconstruction for movement analysis. The video footage is accompanied by quality ratings from 2 experts, participants' self-reported confidence and frequency of performing CPR, and the demographics of the participants. From this data, we present an Automatic Clinical Assessment tool for Basic Life Support that uses pose estimation to determine the spatial location of the participant's movements during CPR and a deep learning network that assesses the performance quality.

11.
J Sports Sci Med ; 23(1): 515-525, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228769

RESUMO

OpenPose-based motion analysis (OpenPose-MA), utilizing deep learning methods, has emerged as a compelling technique for estimating human motion. It addresses the drawbacks associated with conventional three-dimensional motion analysis (3D-MA) and human visual detection-based motion analysis (Human-MA), including costly equipment, time-consuming analysis, and restricted experimental settings. This study aims to assess the precision of OpenPose-MA in comparison to Human-MA, using 3D-MA as the reference standard. The study involved a cohort of 21 young and healthy adults. OpenPose-MA employed the OpenPose algorithm, a deep learning-based open-source two-dimensional (2D) pose estimation method. Human-MA was conducted by a skilled physiotherapist. The knee valgus angle during a drop vertical jump task was computed by OpenPose-MA and Human-MA using the same frontal-plane video image, with 3D-MA serving as the reference standard. Various metrics were utilized to assess the reproducibility, accuracy and similarity of the knee valgus angle between the different methods, including the intraclass correlation coefficient (ICC) (1, 3), mean absolute error (MAE), coefficient of multiple correlation (CMC) for waveform pattern similarity, and Pearson's correlation coefficients (OpenPose-MA vs. 3D-MA, Human-MA vs. 3D-MA). Unpaired t-tests were conducted to compare MAEs and CMCs between OpenPose-MA and Human-MA. The ICCs (1,3) for OpenPose-MA, Human-MA, and 3D-MA demonstrated excellent reproducibility in the DVJ trial. No significant difference between OpenPose-MA and Human-MA was observed in terms of the MAEs (OpenPose: 2.4° [95%CI: 1.9-3.0°], Human: 3.2° [95%CI: 2.1-4.4°]) or CMCs (OpenPose: 0.83 [range: 0.99-0.53], Human: 0.87 [range: 0.24-0.98]) of knee valgus angles. The Pearson's correlation coefficients of OpenPose-MA and Human-MA relative to that of 3D-MA were 0.97 and 0.98, respectively. This study demonstrated that OpenPose-MA achieved satisfactory reproducibility, accuracy and exhibited waveform similarity comparable to 3D-MA, similar to Human-MA. Both OpenPose-MA and Human-MA showed a strong correlation with 3D-MA in terms of knee valgus angle excursion.


Assuntos
Aprendizado Profundo , Humanos , Reprodutibilidade dos Testes , Adulto Jovem , Masculino , Feminino , Fenômenos Biomecânicos , Articulação do Joelho/fisiologia , Gravação em Vídeo , Adulto , Estudos de Tempo e Movimento , Algoritmos , Teste de Esforço/métodos , Exercício Pliométrico , Amplitude de Movimento Articular/fisiologia , Imageamento Tridimensional
12.
Sci Rep ; 14(1): 20668, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237646

RESUMO

Assessment of the upper limb is critical to guiding the rehabilitation cycle. Drawbacks of observation-based assessment include subjectivity and coarse resolution of ordinal scales. Kinematic assessment gives rise to objective quantitative metrics, but uptake is encumbered by costly and impractical setups. Our objective was to investigate feasibility and accuracy of computer vision (CV) for acquiring kinematic metrics of the drinking task, which are recommended in stroke rehabilitation research. We implemented CV for upper limb kinematic assessment using modest cameras and an open-source machine learning solution. To explore feasibility, 10 neurotypical participants were recruited for repeated kinematic measures during the drinking task. To investigate accuracy, a simultaneous marker-based motion capture system was used, and error was quantified for the following kinematic metrics: Number of Movement Units (NMU), Trunk Displacement (TD), and Movement Time (MT). Across all participant trials, kinematic metrics of the drinking task were successfully acquired using CV. Compared to marker-based motion capture, no significant difference was observed for group mean values of kinematic metrics. Mean error for NMU, TD, and MT were - 0.12 units, 3.4 mm, and 0.15 s, respectively. Bland-Altman analysis revealed no bias. Kinematic metrics of the drinking task can be measured using CV, and preliminary findings support accuracy. Further study in neurodivergent populations is needed to determine validity of CV for kinematic assessment of the post-stroke upper limb.


Assuntos
Extremidade Superior , Humanos , Fenômenos Biomecânicos , Projetos Piloto , Masculino , Feminino , Adulto , Extremidade Superior/fisiologia , Movimento/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto Jovem , Aprendizado de Máquina , Pessoa de Meia-Idade
13.
Sensors (Basel) ; 24(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39275384

RESUMO

Accurate 6DoF (degrees of freedom) pose and focal length estimation are important in extended reality (XR) applications, enabling precise object alignment and projection scaling, thereby enhancing user experiences. This study focuses on improving 6DoF pose estimation using single RGB images of unknown camera metadata. Estimating the 6DoF pose and focal length from an uncontrolled RGB image, obtained from the internet, is challenging because it often lacks crucial metadata. Existing methods such as FocalPose and Focalpose++ have made progress in this domain but still face challenges due to the projection scale ambiguity between the translation of an object along the z-axis (tz) and the camera's focal length. To overcome this, we propose a two-stage strategy that decouples the projection scaling ambiguity in the estimation of z-axis translation and focal length. In the first stage, tz is set arbitrarily, and we predict all the other pose parameters and focal length relative to the fixed tz. In the second stage, we predict the true value of tz while scaling the focal length based on the tz update. The proposed two-stage method reduces projection scale ambiguity in RGB images and improves pose estimation accuracy. The iterative update rules constrained to the first stage and tailored loss functions including Huber loss in the second stage enhance the accuracy in both 6DoF pose and focal length estimation. Experimental results using benchmark datasets show significant improvements in terms of median rotation and translation errors, as well as better projection accuracy compared to the existing state-of-the-art methods. In an evaluation across the Pix3D datasets (chair, sofa, table, and bed), the proposed two-stage method improves projection accuracy by approximately 7.19%. Additionally, the incorporation of Huber loss resulted in a significant reduction in translation and focal length errors by 20.27% and 6.65%, respectively, in comparison to the Focalpose++ method.

14.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275556

RESUMO

In this paper, we present a noise-robust approach for the 3D pose estimation of multiple people using appearance similarity. The common methods identify the cross-view correspondences between the detected keypoints and determine their association with a specific person by measuring the distances between the epipolar lines and the joint locations of the 2D keypoints across all the views. Although existing methods achieve remarkable accuracy, they are still sensitive to camera calibration, making them unsuitable for noisy environments where any of the cameras slightly change angle or position. To address these limitations and fix camera calibration error in real-time, we propose a framework for 3D pose estimation which uses appearance similarity. In the proposed framework, we detect the 2D keypoints and extract the appearance feature and transfer it to the central server. The central server uses geometrical affinity and appearance similarity to match the detected 2D human poses to each person. Then, it compares these two groups to identify calibration errors. If a camera with the wrong calibration is identified, the central server fixes the calibration error, ensuring accuracy in the 3D reconstruction of skeletons. In the experimental environment, we verified that the proposed algorithm is robust against false geometrical errors. It achieves around 11.5% and 8% improvement in the accuracy of 3D pose estimation on the Campus and Shelf datasets, respectively.

15.
Heliyon ; 10(17): e36589, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281455

RESUMO

Pose estimation has various applications in analyzing human body movement and behavior, including providing feedback to users about their movements so they can adjust and improve their movement skills. To investigate the current research status and possible gaps, we searched Scopus and Web of Science for articles that (1) human 'body' pose estimation is used and (2) user movement is assessed and communicated. We used either a bottom-up or top-down approach to analyze 45 articles for methods used to estimate human body pose, assess movement, provide feedback to users, as well as methods to evaluate them. Our review found that pose estimation systems typically used CNNs while movement assessment methods varied from mathematical formulas or models, rule-based approaches, to machine learning. Feedback was primarily presented visually in verbal forms and nonverbal forms. The experiments to evaluate each part ranged from the use of public datasets to human participants. We found that pose estimation libraries play an important role in the advancement of this field. Nevertheless, the effectiveness and factors for choosing movement assessment methods for a new context are still unclear. In the end, we suggest that studies about feedback prioritization and erroneous feedback are needed.

16.
JMIR Form Res ; 8: e55476, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186772

RESUMO

BACKGROUND: Prolonged improper posture can lead to forward head posture (FHP), causing headaches, impaired respiratory function, and fatigue. This is especially relevant in sedentary scenarios, where individuals often maintain static postures for extended periods-a significant part of daily life for many. The development of a system capable of detecting FHP is crucial, as it would not only alert users to correct their posture but also serve the broader goal of contributing to public health by preventing the progression of chronic injuries associated with this condition. However, despite significant advancements in estimating human poses from standard 2D images, most computational pose models do not include measurements of the craniovertebral angle, which involves the C7 vertebra, crucial for diagnosing FHP. OBJECTIVE: Accurate diagnosis of FHP typically requires dedicated devices, such as clinical postural assessments or specialized imaging equipment, but their use is impractical for continuous, real-time monitoring in everyday settings. Therefore, developing an accessible, efficient method for regular posture assessment that can be easily integrated into daily activities, providing real-time feedback, and promoting corrective action, is necessary. METHODS: The system sequentially estimates 2D and 3D human anatomical key points from a provided 2D image, using the Detectron2D and VideoPose3D algorithms, respectively. It then uses a graph convolutional network (GCN), explicitly crafted to analyze the spatial configuration and alignment of the upper body's anatomical key points in 3D space. This GCN aims to implicitly learn the intricate relationship between the estimated 3D key points and the correct posture, specifically to identify FHP. RESULTS: The test accuracy was 78.27% when inputs included all joints corresponding to the upper body key points. The GCN model demonstrated slightly superior balanced performance across classes with an F1-score (macro) of 77.54%, compared to the baseline feedforward neural network (FFNN) model's 75.88%. Specifically, the GCN model showed a more balanced precision and recall between the classes, suggesting its potential for better generalization in FHP detection across diverse postures. Meanwhile, the baseline FFNN model demonstrates a higher precision for FHP cases but at the cost of lower recall, indicating that while it is more accurate in confirming FHP when detected, it misses a significant number of actual FHP instances. This assertion is further substantiated by the examination of the latent feature space using t-distributed stochastic neighbor embedding, where the GCN model presented an isotropic distribution, unlike the FFNN model, which showed an anisotropic distribution. CONCLUSIONS: Based on 2D image input using 3D human pose estimation joint inputs, it was found that it is possible to learn FHP-related features using the proposed GCN-based network to develop a posture correction system. We conclude the paper by addressing the limitations of our current system and proposing potential avenues for future work in this area.


Assuntos
Cabeça , Postura , Adulto , Feminino , Humanos , Masculino , Estudos de Viabilidade , Cabeça/anatomia & histologia , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Postura/fisiologia
17.
Neurorehabil Neural Repair ; 38(9): 646-658, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39113590

RESUMO

BACKGROUND: It has long been of interest to characterize the components of the motor abnormality in the arm after stroke. One approach has been to decompose the hemiparesis phenotype into negative signs, such as weakness, and positive signs, such as intrusion of synergies. We sought to identify the contributions of weakness and flexor synergy to motor deficits in sub-acute stroke. METHODS: Thirty-three sub-acute post-stroke participants and 16 healthy controls performed two functional arm movements; one within flexor synergy (shoulder and elbow flexion), and the other outside flexor synergy (shoulder flexion and elbow extension). We analyzed upper limb 3D kinematics to assess both overall task performance and intrusion of pathological synergies. Weakness and spasticity were also measured. RESULTS: Both tasks produced similar impairments compared to controls. Analysis of elbow and shoulder multi-joint coordination patterns revealed intrusion of synergies in the out-of-synergy reaching task based on the time spent within a flexion-flexion pattern and the correlation between shoulder and elbow angles. Regression analysis indicated that both weakness and synergy intrusion contributed to motor impairment in the out-of-synergy reaching task. Notably, the Fugl-Meyer Assessment (FMA) was abnormal even when only weakness caused the impairment, cautioning that it is not a pure synergy scale. CONCLUSIONS: Weakness and synergy intrusion contribute to motor deficits in the sub-acute post-stroke period. An abnormal FMA score cannot be assumed to be due to synergy intrusion. Careful kinematic analysis of naturalistic movements is required to better characterize the contribution of negative and positive signs to upper limb impairment after stroke.


Assuntos
Braço , Debilidade Muscular , Acidente Vascular Cerebral , Humanos , Masculino , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Fenômenos Biomecânicos/fisiologia , Feminino , Pessoa de Meia-Idade , Braço/fisiopatologia , Idoso , Debilidade Muscular/fisiopatologia , Debilidade Muscular/etiologia , Movimento/fisiologia , Paresia/fisiopatologia , Paresia/etiologia , Adulto
18.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39204886

RESUMO

To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving system is essential to adapt to various environmental changes. This paper aims to perform vehicle pose estimation, a crucial element in forming autonomous driving systems, more universally and robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging objects registered in a high-precision map. The proposed approach involves creating a semantic high-definition (HD) map with added objects, forming object-centric features, recognizing locations using these features, and accurately estimating the vehicle's pose from the recognized location. This proposed method enhances the precision of vehicle pose estimation in environments where acquiring RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper demonstrates the proposed method's effectiveness through simulation and real-world experiments, showcasing its capability for more precise pose estimation.

19.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39205041

RESUMO

Six-dimensional object pose estimation is a fundamental problem in the field of computer vision. Recently, category-level object pose estimation methods based on 3D-GC have made significant breakthroughs due to advancements in 3D-GC. However, current methods often fail to capture long-range dependencies, which are crucial for modeling complex and occluded object shapes. Additionally, discerning detailed differences between different objects is essential. Some existing methods utilize self-attention mechanisms or Transformer encoder-decoder structures to address the lack of long-range dependencies, but they only focus on first-order information of features, failing to explore more complex information and neglecting detailed differences between objects. In this paper, we propose SAPENet, which follows the 3D-GC architecture but replaces the 3D-GC in the encoder part with HS-layer to extract features and incorporates statistical attention to compute higher-order statistical information. Additionally, three sub-modules are designed for pose regression, point cloud reconstruction, and bounding box voting. The pose regression module also integrates statistical attention to leverage higher-order statistical information for modeling geometric relationships and aiding regression. Experiments demonstrate that our method achieves outstanding performance, attaining an mAP of 49.5 on the 5°2 cm metric, which is 3.4 higher than the baseline model. Our method achieves state-of-the-art (SOTA) performance on the REAL275 dataset.

20.
Sensors (Basel) ; 24(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39205072

RESUMO

The excessive use of electronic devices for prolonged periods has led to problems such as neck pain and pressure injury in sedentary people. If not detected and corrected early, these issues can cause serious risks to physical health. Detectors for generic objects cannot adequately capture such subtle neck behaviors, resulting in missed detections. In this paper, we explore a deep learning-based solution for detecting abnormal behavior of the neck and propose a model called NABNet that combines object detection based on YOLOv5s with pose estimation based on Lightweight OpenPose. NABNet extracts the detailed behavior characteristics of the neck from global to local and detects abnormal behavior by analyzing the angle of the data. We deployed NABNet on the cloud and edge devices to achieve remote monitoring and abnormal behavior alarms. Finally, we applied the resulting NABNet-based IoT system for abnormal behavior detection in order to evaluate its effectiveness. The experimental results show that our system can effectively detect abnormal neck behavior and raise alarms on the cloud platform, with the highest accuracy reaching 94.13%.


Assuntos
Aprendizado Profundo , Pescoço , Humanos , Cervicalgia/diagnóstico , Internet das Coisas , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA