Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 141: 492-501, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323313

RESUMO

Peroxiredoxins (Prx) are enzymes that efficiently reduce hydroperoxides through active participation of cysteine residues (CP, CR). The first step in catalysis, the reduction of peroxide substrate, is fast, 107 - 108 M-1s-1 for human Prx2. In addition, the high intracellular concentration of Prx positions them not only as good antioxidants but also as central players in redox signaling pathways. These biological functions can be affected by post-translational modifications that could alter the peroxidase activity and/or interaction with other proteins. In particular, inactivation by hyperoxidation of CP, which occurs when a second molecule of peroxide reacts with the CP in the sulfenic acid form, modulates their participation in redox signaling pathways. The higher sensitivity to hyperoxidation of some Prx has been related to the presence of structural motifs that disfavor disulfide formation at the active site, making the CP sulfenic acid more available for hyperoxidation or interaction with a redox protein target. We previously reported that treatment of human Prx2 with peroxynitrite results in tyrosine nitration, a post-translational modification on non-catalytic residues, yielding a more active peroxidase with higher resistance to hyperoxidation. In this work, studies on various mutants of hPrx2 confirm that the presence of the tyrosyl side-chain of Y193, belonging to the C-terminal YF motif of eukaryotic Prx, is necessary to observe the increase in Prx2 resistance to hyperoxidation. Moreover, our results underline the critical role of this structural motif on the rate of disulfide formation that determines the differential participation of Prx in redox signaling pathways.


Assuntos
Oxirredução , Peroxirredoxinas/genética , Processamento de Proteína Pós-Traducional/genética , Tirosina/genética , Domínio Catalítico/genética , Cisteína/genética , Dissulfetos/química , Humanos , Mutação/genética , Nitratos/metabolismo , Peroxidase/genética , Peróxidos/metabolismo , Peroxirredoxinas/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Ácido Peroxinitroso/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
J Biol Chem ; 290(26): 16403-14, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25969538

RESUMO

Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm.


Assuntos
Arginina/metabolismo , Calreticulina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Células CHO , Calreticulina/química , Calreticulina/genética , Cricetinae , Cricetulus , Meia-Vida , Humanos , Camundongos , Células NIH 3T3 , Processamento de Proteína Pós-Traducional , Proteólise , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA