Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 689-698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38227116

RESUMO

The use of fungicides in the postharvest treatment of mangoes has been widespread due to the incidence of pathogens, but awareness of the health risks arising from their use has increased, driving the search for more sustainable treatments. This study aimed to evaluate the activity of antifungal treatment of seven essential oils (EO) against four fungi that cause postharvest diseases in mangoes and define the minimum inhibitory concentration (MIC) and chemical composition, analyzed by gas chromatography (GC-MS). The results showed that the EOs of oregano, rosemary pepper, cinnamon bark, and clove inhibited 100% of the mycelial growth of the studied pathogens, with MIC ranging from 250 to 2000 µL.L-1. The main compound found in oregano was carvacrol (69.1%); in rosemary and pepper oil, it was thymol (77.2%); cinnamaldehyde (85.1%) was the main constituent of cinnamon bark, and the eugenol (84.84%) in cloves. When evaluating the antifungal activity of these compounds, thymol and carvacrol showed greater inhibitory activity against fungi. Therefore, this study showed the great potential of oregano, clove, rosemary pepper, and cinnamon bark essential oil as alternative treatments to synthetic fungicides in controlling postharvest diseases in mangoes.


Assuntos
Cimenos , Fungicidas Industriais , Mangifera , Óleos Voláteis , Timol/farmacologia , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Fungos , Testes de Sensibilidade Microbiana
2.
Extremophiles ; 27(2): 16, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410158

RESUMO

The postharvest disease popularly known as gray mold is considered one of the most limiting factors strawberry fruit production. The most effective way to control this disease is still the use of chemical fungicides. However, other alternative sources of control are being explored. Among these, psychrophilic yeasts adapted to extreme conditions, such as those found in the Antarctic region, may have great potential for use as biocontrol agents. Thus, the present study aimed to select psychrotolerant yeasts obtained from Antarctic region and to evaluate their potential for biocontrol under gray mold, caused by Botrytis cinerea in strawberries stored at low temperature. For this, 20 potential antagonist yeasts were evaluated in vitro (thermotolerance and enzymatic) assays. Debaryomyces hansenii, Rhodotorula mucilaginosa and Dioszegia hungarica were selected for growing in strawberry juice. However, only D. hansenii was selected for in vivo studies and showed a reduction in the incidence of gray mold by 82% for the tests performed on injury and 86% for the tests on non-injured fruits treated by immersion bath. Thus, demonstrating that the selection of this cold-adapted Antarctic yeast can be a promising strategy as a biocontrol agent used to curb the development of gray mold in strawberry fruits.


Assuntos
Fragaria , Fungicidas Industriais , Regiões Antárticas , Fungos , Leveduras , Fungicidas Industriais/farmacologia
3.
Plant Dis ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392029

RESUMO

Banana is a fruit of great importance in Brazil and crown rot cause considerable damage and losses (Ploetz et al. 2003). The disease is associated with fungal complexes, especially the Lasiodiplodia theobromae sensu lato (Kamel et al. 2016; Renganathan et al. 2020; Waliullah et al. 2022). Three asymptomatic bunches of banana cv. 'Prata Catarina' were collected in Russas, Brazil (04°58'11.6"S, 38°01'44.5"W), in 2017. The samples were disinfected (NaClO, 200 ppm), and incubated in a moist chamber at 28 °C, with 12 h light/12 h dark for 3 days. With the appearance of the symptoms (32% of severity), the isolation was conducted in potato dextrose agar (PDA). A monosporic culture (BAN14) was obtained from a typical crown rot lesion, which was subjected to morphological characterization, showing abundant aerial mycelium of olivaceous grey color on the surface and greenish grey on the back (Rayner 1970) in PDA after 15 days at 28 °C. The growth rate was 28.2 mm. day-1. The fungus produced pycnidia and conidia on water agar medium containing pine needles, with 3-4 weeks at 28 °C, presenting conidia initially aseptate, subglobose to subcylindrical, becoming pigmented with 1-central transverse septum and longitudinal striations 23.5 (18.7) 26.0 x 12.7 (9.7) 14.8 µm (n=50). Paraphyses, hyaline, cylindrical, thin-walled, apparently coenocytic with rounded apex, with length and width dimensions of 34 (43.8) 53.2 x 2.1 (2.5) 3.2 µm (n=30). Conidiophore absent, conidiogenous cells hyaline, smooth and with thin walls. The genomic DNA was extracted and amplified by PCR with primers TEF1-688F/TEF1-1251R, ITS1/ITS4, and Bt2a/Bt2b, and sequenced in both directions (O'Donnell et al. 1998; O'Donnell et al. 2010) (GenBank accession ON975017 [TEF1], ON986403 [TUB2], and ON921398 [ITS]). BLASTn analysis of TEF1, TUB2 and ITS sequences in NCBI database showed 99 to 100% nucleotide identity to a representative isolate of Lasiodiplodia iraniensis (IRAN921). Phylogenetic analysis using maximum parsimony based on the combined TEF1, TUB2 and ITS sequences indicated that the BAN14 formed a supported clade (82% bootstrap value) to L. iraniensis. The pathogenicity was evaluated in 20 banana fruit cv. 'Prata Catarina', at the point of harvest. For inoculation, the bananas were washed with water and soap, and disinfected with NaClO (200 ppm). Posteriorly, two wounds were made on the extremities of the fruits, in which were deposited mycelial discs of 5 mm in diameter, with 7 days of the growth on PDA. After inoculation, the fruits were incubated in plastic boxes in a wet chamber at 25 °C, with 12 h light/12 h dark for 5 days. The control fruits were not inoculated with the pathogen, only with PDA discs. The experiments were repeat twice. The BAN14 isolate was pathogenic to the banana cv. 'Prata Catarina'. The BAN14 was grouped with the species L. iraniensis described by Abdollahzadeh et al. (2010) in Iran. This species is distributed in Asia, South and North America, Australia, and Africa. In Brazil it was reported in association to Anacardium occidentale, Annona muricata, A. squamosa, Annona ×cherimola-squamosa, Citrus sp., Eucalyptus sp., Jatropha curcas, Mangifera indica, Manihot esculenta, Nopalea cochenillifera, Vitis sp. and V. vinifera. Until the moment, there is not description of the relation between banana crown rot and L. iraniensis (Farr and Rossman 2022). Our work is the first report on the pathogenicity of this species on banana fruit cv. 'Prata Catarina' worldwide.

4.
Plant Dis ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724098

RESUMO

Postharvest diseases compromise banana quality and cause high economic losses in Brazil. Among them, the crown rot prevails and its causal agents belong to distinct fungal species such as Colletotrichum musae (Berk. & Curt.) von Arx, Fusarium spp., and Lasiodiplodia theobromae (Pat.) Griff. & Maubl. (Griffee and Burden 1976; Ploetz et al. 2003). Symptoms of crown rot were observed on banana fruits of cv. Williams in a commercial area in Assu, Rio Grande do Norte, Brazil (04°54'0.06"S, 37°22'6.02"W) in 2017. The samples were collected, superficially disinfected with NaClO (2%), and incubated in a wet chamber at 25 °C, with a 12 h photoperiod, for approximately 3 days. After the appearance of disease symptoms and pathogen signs, mycelia were transferred from the lesions to obtain pure cultures on a potato dextrose agar (PDA) medium. Thus, a monosporic culture was obtained (isolate BAN82). The fungus produced pycnidia with conidia on potato carrot agar (PCA) culture medium containing pine needles, after four weeks of incubation at 28 °C. The conidia were hyaline when immature and brown with central transverse septum when mature. The presence of conidiogenous cells, paraphyses, and conidiophores also were observed. The conidia present ovoid format measuring 20-28 x 11-14 µm (n=50). The fungal colony produced abundant aerial mycelia of mouse grey coloration, progressing to dark mouse grey (Rayner 1970), on PDA for 15 days to 28 °C. The growth rate was 29.3 mm/day on PDA. The genomic DNA was extracted and amplified PCR with primers TEF1-688F/TEF1-1251R, ITS1/ITS4, and Bt2a/Bt2b and sequenced in both directions. The TEF1 and TUB2 sequences showed 100%, and the ITS showed 93.06% identity with the sequences of Lasiodiplodia brasiliensis (GenBank accession numbers: ON623895, TEF1, ON623896, TUB2, and ON599012, ITS. Multiple alignments of the combined dataset of the isolate and representative sequences obtained from GenBank were submitted phylogenetic analyses to bayesian inference (IB) with posterior probabilities of 10,000,000 generations. The morphological characteristics together with multigenic analysis of the three genomic regions made it possible to identify the BAN82 isolate as Lasiodiplodia brasiliensis, showing bootstrap support of posterior probabilities of 0,98 in the IB analysis. The pathogenicity was evaluated on 16 banana fruits from cv. Prata Catarina, at the point of harvest. For inoculation, the bananas were disinfected with water, soap, and, NaClO (2%). Posteriorly, the fruits were wounded on both ends, followed by the deposition of 5mm diameter mycelial plugs from the fungal culture, within 7 days of the growth. After the inoculation, the fruits were incubated in plastic boxes in a wet chamber at 25 °C, with 12 h photoperiod, for 3 days. To complete Koch's postulates, the isolate was inoculated again into 16 other banana fruits from cv. Prata Catarina. The negative control fruits were not inoculated with the pathogen, only with PDA discs. The BAN82 isolate was pathogenic to the banana cv. Prata Catarina. In the Brazilian Northeast, L. brasiliensis was described in 2014 as being associated with papaya stem rot. Up to the moment, there are no reports of L. brasiliensis as the causal agent of crown rot on bananas from Brazil (Netto et al. 2014; Farr and Rossman 2022). Thus, our work is the first to report L. brasiliensis causing crown rot on banana fruits cv. Prata Catarina in Brazil.

5.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690347

RESUMO

Lytic enzymes secreted by Kluyveromyces marxianus can lyse Saccharomyces cerevisiae cells. Their ability to hydrolyze yeast cell walls can be used in biotechnological applications, such as the production of glucans and protoplasts, as well as a biological control agent against plant pathogenic fungi. Herein, 27 proteins secreted by K. marxianus were identified by mass spectrometry analyses. Importantly, 14 out of the 27 proteins were classified as hydrolases. Indeed, the enzyme extract secreted by K. marxianus caused damage to S. cerevisiae cells and reduced yeast cell viability. Moreover, K marxianus inhibited spore germination and mycelial growth of the phytopathogenic fungus Botrytis cinerea in simultaneous cocultivation assays. We suggest that this inhibition may be partially related to the yeast's ability to secrete lytic enzymes. Consistent with the in vitro antagonistic tests, K. marxianus was able to protect strawberry fruits inoculated with B. cinerea. Therefore, these findings suggest that K. marxianus possesses potential as a biocontrol agent against strawberry gray mold during the postharvest stage and may also have potential against other phytopathogenic fungi by means of its lytic enzymatic arsenal.


Assuntos
Kluyveromyces , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fungos , Kluyveromyces/metabolismo , Biotecnologia
6.
Pathogens ; 11(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297261

RESUMO

Anthracnose caused by Colletotrichum species is one of the most frequent and damaging fungal diseases affecting avocado fruits (Persea americana Mill.) worldwide. In Chile, the disease incidence has increased over the last decades due to the establishment of commercial groves in more humid areas. Since 2018, unusual symptoms of anthracnose have been observed on Hass avocado fruits, with lesions developing a white to gray sporulation. Morphological features and multi-locus phylogenetic analyses using six DNA barcodes (act, chs-1, gapdh, his3, ITS, and tub2) allowed the identification of the causal agent as Colletotrichum anthrisci, a member of the dematium species complex. Pathogenicity was confirmed by inoculating healthy Hass avocado fruits with representative isolates, reproducing the same symptoms initially observed, and successfully reisolating the same isolates from the margin of the necrotic pulp. Previously, several Colletotrichum species belonging to other species complexes have been associated with avocado anthracnose in other countries. To our knowledge, this is the first record of C. anthrisci and of a species of the dematium species complex causing anthracnose on avocado fruits in Chile and worldwide.

7.
Front Microbiol ; 12: 709855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421868

RESUMO

In recent decades, various bacterial species have been characterized as biocontrol agents for plant crop diseases; however, only a few genera have been predominantly reported in the literature. Therefore, the identification of new antagonists against phytopathogens is essential for boosting sustainable food production systems. In this study, we evaluated the role of strain SER3 from the recently discovered Rouxiella badensis as a biocontrol agent. SER3 was isolated from the phyllosphere of decaying strawberry fruit (Fragaria × ananassa) and showed different grades of antagonism against 20 fungal pathogens of berries, based on confrontation assays, due to the action of its diffusible and volatile compounds. These fungal pathogens were isolated from decayed strawberry, blackberry, and blueberry fruit and were characterized through internal transcribed spacer (ITS) sequencing and homology searches, exhibiting similarity with well-known postharvest pathogens such as Botrytis, Fusarium, Geotrichum, Mucor, Penicillium, Alternaria, and Botryosphaeria. Koch's postulates were confirmed for most pathogens by reinfecting berry fruit. SER3 showed good capacity to inhibit the growth of Botrytis cinerea and Fusarium brachygibbosum in strawberry fruit, affecting mycelial development. To gain better understanding of the genetic and metabolic capacities of the SER3 strain, its draft genome was determined and was found to comprise a single chromosome of 5.08 Mb, 52.8% G + C content, and 4,545 protein-coding genes. Phylogenetic analysis indicated that the SER3 strain is affiliated with the R. badensis species, with an average nucleotide identity >96% and a genome-to-genome distance >70%. A comparison of the genomic properties of R. badensis SER3 and other close bacterial relatives showed several genes with potential functions in biocontrol activities, such as those encoding siderophores, non-ribosomal peptide synthetases, and polyketide synthases. This is the first study to demonstrate a novel role of the recently discovered R. badensis species (and any other species of the genus Rouxiella) as a biocontrol agent against postharvest fungal pathogens.

8.
Int J Food Microbiol ; 335: 108860, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947146

RESUMO

The effectiveness of the "generally recognized as safe" (GRAS) salts potassium sorbate (PS), sodium benzoate (SB), sodium ethylparaben (SEP) and sodium methylparaben (SMP) to control sour rot, caused by Geotrichum citri-aurantii, was assessed by dipping economically important citrus species and cultivars in aqueous solutions for 30, 60 or 150 s at 20 °C, followed by examination after 8 d of storage at 28 °C. Curative activity was determined because the fruit were inoculated 24 h prior to treatment. Dipping fruit for 60 s in SMP (200 mM), SEP (200 mM) or SB (3% w/v) were very effective and reduced sour rot incidence and severity by up to 90%. Their effectiveness was similar or superior to that of the conventional fungicide propiconazole (PCZ). In contrast, PS (200 mM) did not control sour rot on 'Oronules' or 'Ortanique' mandarins, but it reduced sour rot incidence on 'Barnfield' oranges by 50% compared to inoculated, water-treated control fruit. Sour rot was better controlled on oranges than on mandarins. Furthermore, heating the solutions to 50 °C enhanced their effectiveness, while post-treatment rinsing of the fruit with tap water reduced their effectiveness. Dipping 'Valencia Late' oranges in SB (3% w/v) or SMP (200 mM) for 60 s followed by long storage for up to 8 weeks at 5 °C and 90% RH, reduced sour rot incidence from 55% among water-treated control fruit to 2 to 6%, and matched the effectiveness of PCZ. No fruit in any test were visibly harmed. Both SB and SMP salts could be potential alternatives to conventional fungicides, such as PCZ or guazatine, for the integrated postharvest management of citrus sour rot.


Assuntos
Citrus/microbiologia , Frutas/microbiologia , Geotrichum/crescimento & desenvolvimento , Sais/farmacologia , Armazenamento de Alimentos , Fungicidas Industriais/farmacologia , Geotrichum/efeitos dos fármacos , Temperatura , Fatores de Tempo
9.
Microorganisms ; 8(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993018

RESUMO

Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing.

10.
J Food Prot ; 83(9): 1495-1504, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236559

RESUMO

ABSTRACT: Colletotrichum species are the most important postharvest spoilage fungi of papaya fruit. The objective of this research was to evaluate the effect of temperature and relative humidity on growth rate and time for growth to become visible of five strains of Colletotrichum gloeosporioides isolated from papaya fruit in a complex medium. As a primary model, the radial growth rates were estimated using the Baranyi and Roberts model in papaya agar. The Solver MS Excel function was used to obtain the time to visible mycelium (tv). Secondary models obtained with the Rosso et al. cardinal model of inflection were applied to describe the effect of temperature on the growth rate (µ). The Arrhenius-Davey model was used to model tv. The obtained models seem to be satisfactory for describing both µ and tv. The relative humidity had an effect on µ and tv for all tested C. gloeosporioides isolates, but no model accurately described the behavior of the fungus. External validation of models was performed with papaya fruit. Growth models were developed with the same models used in vitro. The bias and the accuracy factors as indices for performance evaluation of predictive models in food microbiology as a function of temperature and RH were 1.22 and 1.33, respectively, for µ and 1.18 and 1.62, respectively, for tv, indicating accurate predictions. The supply chain of papaya is complex and requires constant conditions, and poor conditions can result in damage to the fruit. Knowledge of the behavior of C. gloeosporioides on papaya fruit and application of the developed models in the supply chain will help to establish transport control strategies to combat these fungi. This research has contributed to development of the first models of growth for C. gloeosporioides in Mexico.


Assuntos
Carica , Colletotrichum , Frutas , México , Doenças das Plantas
11.
Biosci. j. (Online) ; 35(6): 1799-1809, nov./dec. 2019. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1049126

RESUMO

Brazil is the largest producer of yellow passionfruit (Passiflora edulis f. flavicarpa) and one of its production problems is the anthracnose (Colletotrichum spp.). The use of fungicides on control of postharvest diseases is a method that protects the fruits during storage. However, precautions must be taken due to fungicide toxicity. The restriction to the use of fungicides in post-harvest led a demand for alternative methods of disease control, and, the phosphite application is one of these methods. Therefore, this work aimed to evaluate the effects of fruit immersion in phosphite on postharvest control of anthracnose. Two tests were developed in vitro to assess the effect on the fungus: phosphite Mg2 (40%P2O5+6%Mg), Zn (40%P2O5+10%Zn), Ca1 (30%P2O5+7%Ca) and K1 (40%P2O5+20%K2O). For the in vivo tests, passionfruit (Gigante Amarelo), were wounded and inoculated (50L; 106conidia mL-1). Two tests were done with: Cu (25%P2O5+5%Cu), 2.5mL L-1; Zn, 2.5mL L-1; K1, 2.5mL L-1; Mg1 (30%P2O5+4%Mg), 3mL L-1; Ca1, 3mL L-1; Ca2 (10%P2O5+6%Ca), 4mL L-1; K2 (40%P2O5+20%K2O), 1.5mL L-1; Mg2 (40%P2O5+6%Mg), 1.5mL L-1; K3 (20%P2O5+20%K2O) 1.75 mL L-1; K4 (30%P2O5+20%K2O), 1.75mL L-1. Other two tests with phosphites Mg2, Ca1, Zn and K1 were with CaCl2 (2%) was developed. In addition, phosphites were tested at 25, 50, 100 and 200% of the dose: K2 (100%; 1.5mL L-1) and Ca1 (100%; 3 mL L-1). The phosphites Mg2, Ca1, K1 and Zn in vitro have reduced mycelial growth and fungus conidia production. The phosphites K1, K2, Ca1 and Zn were the ones that most reduced the size of the anthracnose lesion. There were no differences among treatments, concerning the physico-chemical fruit properties analyzed (% fresh mass loss, total soluble solids, pH and titratable acidity).


O Brasil é o maior produtor mundial de maracujá-amarelo (Passiflora edulis f. flavicarpa) e um dos problemas para sua produção é a antracnose (Colletotrichum spp.). O uso de fungicidas no controle de doenças pós-colheita é um método que protege os frutos durante o armazenamento, mas, precauções adicionais devem ser tomadas quanto à sua toxidade, presença de resíduos e a provável seleção de fungos resistentes. A restrição ao uso de fungicidas na pós-colheita cresceu e levou à procura de alternativas de controle, e, entre tais está à aplicação de fosfitos. Diante disso, este trabalho objetivou avaliar os efeitos da imersão de frutos em soluções de fosfitos no controle da antracnose em pós-colheita. Dois testes in vitro foram feitospara avaliar o efeito de fosfitono fungo: Mg2 (40%P2O5+6%Mg), Zn (40%P2O5+10%Zn), Ca1 (30%P2O5+7%Ca) e K1 (40%P2O5+20%K2O). In vivo, frutos de maracujá (Gigante Amarelo), foram feridos e inoculados (50l; 106conídios mL-1). Dois testes foram feitos com: Cu (25%P2O5+5%Cu), 2,5mL L-1; Zn, 2,5mL L-1; K1, 2,5mL L-1; Mg1 (30%P2O5+4%Mg), 3mL L-1; Ca1, 3mL L-1; Ca2 (10%P2O5+6%Ca), 4mL L-1; K2 (40%P2O5+20%K2O), 1,5mL L-1; Mg2 (40%P2O5+6%Mg), 1,5mL L-1; K3 (20%P2O5+20%K2O), 1,75mL L-1; K4 (30%P2O5+20%K2O), 1,75mL L-1. Outros dois testes com fosfitos foram com CaCl2 (2%) e Mg2, Ca1, Zn e K1. Ainda, dois fosfitos foram testados a 25, 50, 100 e 200% da dose: K2 (100%; 1,5mL L-1) e Ca1 (100%; 3mL L-1). Os fosfitos Mg2, Ca1, K1 e Zn in vitro reduziram o crescimento micelial e a produção de conídios do fungo. Os fosfitos K1, K2, Ca1 e Zn foram que mais reduziram o diâmetro da lesão causada pelo patógeno. Ca1 e K1 com CaCl2 reduziram o tamanho das lesões. Não houve diferenças significativas entre os tratamentos, quanto as características físico-químicas analisadas (% perda de massa fresca, teor de sólidos solúveis totais, pH e acidez titulável) dos frutos.


Assuntos
Produção Agrícola , Fosfitos , Colletotrichum , Passiflora
12.
Braz. arch. biol. technol ; Braz. arch. biol. technol;60: e17160339, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839100

RESUMO

ABSTRACT Postharvest diseases of fruits and vegetables result in critical losses of production in worldwide. The losses often are caused by fungi and nowadays, most fungal pathogens are controlled by several strategies such as the use of fungicides. However, most of the fungicides are chemical-based compounds and are dangerous to human health and the nature. Therefore, the discovery of healthy and reliable strategies is crucial to control of fungal pathogens. In the paper, it was aimed to evaluate and characterize yeast isolates previously isolated from dairy products for the production of killer toxin. A total of 18 yeasts have been found to produce antagonistic behavior against susceptible fungal species. All of the yeasts expressing killer character were characterized by using several molecular techniques, and isolates TEM8 and 17 identified as D. hansenii have showed the strongest antifungal activities. Improvement of killer toxin production by the yeasts also has been studied, and the highest production was found in YMB medium containing NaCl (6%) and DMSO (1000 ppm) at pH 4.0 and 20oC. The killer characters of these yeasts have indicated the potential use of the yeasts as antagonists for the control of postharvest diseases in agricultural industries.

13.
Biosci. j. (Online) ; 31(2): 451-459, mar./abr. 2015.
Artigo em Português | LILACS | ID: biblio-964078

RESUMO

Considerando as perdas causadas em pós-colheita pela antracnose no pimentão e à ineficácia das medidas de controle atualmente utilizadas, este trabalho teve por objetivo estudar a potencialidade antagônica in vitro e in vivo de quinze isolados de leveduras à Colletotrichum sp., agente causal da antracnose em pimentão. Foi calculada a porcentagem de inibição do crescimento do fungo dos tratamentos em relação à testemunha nos testes in vitro e determinado o tamanho da área lesionada em frutos através da mensuração do comprimento da lesão em dois sentidos diametricamente opostos nos testes in vivo. As leveduras que obtiveram o melhor resultado no controle da antracnose foram identificadas através de características macroscópicas, microscópicas, fisiológicas, bioquímicas e por taxonomia molecular, sendo os isolados de levedura 13E e 13A1, os que obtiveram as melhores respostas no controle do fitopatógeno tanto in vitro quanto in vivo, identificados como pertencentes à espécie Rhodotorula glutinis.


Considering the losses caused by post-harvest anthracnose in sweet pepper chili and ineffectiveness of control measures currently used, this study had the objective of evaluate the antagonistic potential in vitro and in vivo of fifteen isolates of yeast to Colletotrichum sp., the causal agent of anthracnose on pepper. By calculating the percentage growth inhibition of the fungus treatment compared to the control tests in vitro and determining the size of lesions via the measurement of lesion length in both directions diametrically affixed in vivo tests. Yeasts who obtained the best result in controlling anthracnose were identified by characteristic macroscopic, microscopic, physiological, biochemical and molecular taxonomy. In this study, the yeast isolates 13E and 13A1, which obtained the best results in controlling the pathogen both in vitro and in vivo of the species Rhodotorula glutinis.


Assuntos
Rhodotorula , Leveduras , Capsicum , Controle Biológico de Vetores , Colletotrichum
14.
Int J Food Microbiol ; 166(3): 391-8, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24026010

RESUMO

The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot.


Assuntos
Alternaria/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Aditivos Alimentares/farmacologia , Frutas/microbiologia , Solanum lycopersicum/microbiologia , Alternaria/crescimento & desenvolvimento , Antifúngicos/farmacologia , Botrytis/crescimento & desenvolvimento , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Tempo
15.
Braz. j. microbiol ; Braz. j. microbiol;41(2): 404-410, Apr.-June 2010. ilus
Artigo em Inglês | LILACS | ID: lil-545349

RESUMO

Our investigation of integrated biological control (IBC) started with an assay testing activity of the predacious yeast Saccharomycopsis crataegensis UFMG-DC19.2 against Penicillium digitatum LCP 4354, a very aggressive fungus that causes postharvest decay in oranges. Under unfavourable environmental conditions, the yeast showed a high potential for control (39.9 percent disease severity reduction) of this fungus. This result was decisive for the next step, in which S. crataegensis was tested in association with sodium bicarbonate salt, a generally regarded as safe (GRAS) substance. The yeast was able to survive at different concentrations of the salt (1 percent, 2 percent and 5 percent), and continued to grow for a week at the wound site, remaining viable at high population for 14 days on the fruit surface. The yeast alone reduced the severity of decay by 41.7 percent and sodium bicarbonate alone reduced severity of decay by 19.8 percent, whereas the application of both led to a delay in the development of symptoms from 2 to 10 days. Ingredients of the formulations were not aggressive to fruits since no lesions were produced in control experiments.


Assuntos
Citrus sinensis , Fermentação , Contaminação de Alimentos , Leveduras/crescimento & desenvolvimento , Controle Biológico de Vetores , Penicillium/crescimento & desenvolvimento , Saccharomycopsis/crescimento & desenvolvimento , Produção Agrícola , Amostras de Alimentos , Métodos , Métodos
16.
Braz J Microbiol ; 41(2): 404-10, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031511

RESUMO

Our investigation of integrated biological control (IBC) started with an assay testing activity of the predacious yeast Saccharomycopsis crataegensis UFMG-DC19.2 against Penicillium digitatum LCP 4354, a very aggressive fungus that causes postharvest decay in oranges. Under unfavourable environmental conditions, the yeast showed a high potential for control (39.9% disease severity reduction) of this fungus. This result was decisive for the next step, in which S. crataegensis was tested in association with sodium bicarbonate salt, a generally regarded as safe (GRAS) substance. The yeast was able to survive at different concentrations of the salt (1%, 2% and 5%), and continued to grow for a week at the wound site, remaining viable at high population for 14 days on the fruit surface. The yeast alone reduced the severity of decay by 41.7% and sodium bicarbonate alone reduced severity of decay by 19.8%, whereas the application of both led to a delay in the development of symptoms from 2 to 10 days. Ingredients of the formulations were not aggressive to fruits since no lesions were produced in control experiments.

17.
Artigo em Inglês | VETINDEX | ID: vti-444532

RESUMO

Our investigation of integrated biological control (IBC) started with an assay testing activity of the predacious yeast Saccharomycopsis crataegensis UFMG-DC19.2 against Penicillium digitatum LCP 4354, a very aggressive fungus that causes postharvest decay in oranges. Under unfavourable environmental conditions, the yeast showed a high potential for control (39.9% disease severity reduction) of this fungus. This result was decisive for the next step, in which S. crataegensis was tested in association with sodium bicarbonate salt, a generally regarded as safe (GRAS) substance. The yeast was able to survive at different concentrations of the salt (1%, 2% and 5%), and continued to grow for a week at the wound site, remaining viable at high population for 14 days on the fruit surface. The yeast alone reduced the severity of decay by 41.7% and sodium bicarbonate alone reduced severity of decay by 19.8%, whereas the application of both led to a delay in the development of symptoms from 2 to 10 days. Ingredients of the formulations were not aggressive to fruits since no lesions were produced in control experiments.

18.
Braz. j. microbiol ; Braz. j. microbiol;39(1): 85-90, Jan.-Mar. 2008. ilus, graf
Artigo em Inglês | LILACS | ID: lil-480681

RESUMO

In this study we evaluated the ability of Saccharomycopsis schoenii Nadson and Krassiln (UWO-PS 80-91) as biocontrol agent against plant pathogenic filamentous fungi P. expansum Link (UFMG 01-2002), P. italicum Wehmer (LCP 61.1199), and P. digitatum (Pers.: Fr.) (LCP 984263, LCP 68175 and LCP 4354). S. schoenii was able to reduce disease severity in oranges inoculated with all fungi. Among the phytopathogens, P. digitatum LCP4354 was the most virulent whereas P. digitatum LCP 68175 was the most susceptible to predation. The yeast was able to survive for 21 days on the fruit surface and did not produce lesions on oranges. Production of antagonistic substances by S. schoenii was not detected using standard techniques. Our results point to the potential use of S. schoenii to control postharvest phytopathogens in fruits.


Este estudo avaliou a capacidade de levedura Saccharomycopsis schoenii Nadson & Krassiln (UWO-PS 80-91) em controlar o crescimento dos fungos fitopatogênicos Penicillium expansum Link (UFMG 01-2002), P. italicum Wehmer (LCP 61.1199), e P. digitatum (Pers.: Fr.) (LCP 984263, LCP 68175 e LCP 4354). S. schoenii reduziu a severidade da doença em laranjas inoculadas com todos os fitopatógenos testados. Entre estes fitopatógenos, P. digitatum LCP4354 apresentou a maior virulência enquanto que P. digitatum LCP 68175 foi o mais suscetível à predação. A levedura foi capaz de permanecer viável, sem produzir lesões na superfície dos frutos por 21 dias. Outra característica desejável observada foi a ausência de produção de substâncias antagonistas. Sendo assim, este trabalho evidência o potencial de utilização da levedura S. schoenii em protocolos de controle biológico de doenças pós-colheita em laranjas.


Assuntos
Citrus sinensis , Controle Biológico de Vetores , Penicillium/crescimento & desenvolvimento , Penicillium/isolamento & purificação , Saccharomycopsis/crescimento & desenvolvimento , Saccharomycopsis/isolamento & purificação , Compostos Químicos , Métodos , Virulência
19.
Braz J Microbiol ; 39(1): 85-90, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031185

RESUMO

In this study we evaluated the ability of Saccharomycopsis schoenii Nadson and Krassiln (UWO-PS 80-91) as biocontrol agent against plant pathogenic filamentous fungi P. expansum Link (UFMG 01-2002), P. italicum Wehmer (LCP 61.1199), and P. digitatum (Pers.: Fr.) (LCP 984263, LCP 68175 and LCP 4354). S. schoenii was able to reduce disease severity in oranges inoculated with all fungi. Among the phytopathogens, P. digitatum LCP4354 was the most virulent whereas P. digitatum LCP 68175 was the most susceptible to predation. The yeast was able to survive for 21 days on the fruit surface and did not produce lesions on oranges. Production of antagonistic substances by S. schoenii was not detected using standard techniques. Our results point to the potential use of S. schoenii to control postharvest phytopathogens in fruits.

20.
Artigo em Inglês | VETINDEX | ID: vti-444206

RESUMO

In this study we evaluated the ability of Saccharomycopsis schoenii Nadson and Krassiln (UWO-PS 80-91) as biocontrol agent against plant pathogenic filamentous fungi P. expansum Link (UFMG 01-2002), P. italicum Wehmer (LCP 61.1199), and P. digitatum (Pers.: Fr.) (LCP 984263, LCP 68175 and LCP 4354). S. schoenii was able to reduce disease severity in oranges inoculated with all fungi. Among the phytopathogens, P. digitatum LCP4354 was the most virulent whereas P. digitatum LCP 68175 was the most susceptible to predation. The yeast was able to survive for 21 days on the fruit surface and did not produce lesions on oranges. Production of antagonistic substances by S. schoenii was not detected using standard techniques. Our results point to the potential use of S. schoenii to control postharvest phytopathogens in fruits.


Este estudo avaliou a capacidade de levedura Saccharomycopsis schoenii Nadson & Krassiln (UWO-PS 80-91) em controlar o crescimento dos fungos fitopatogênicos Penicillium expansum Link (UFMG 01-2002), P. italicum Wehmer (LCP 61.1199), e P. digitatum (Pers.: Fr.) (LCP 984263, LCP 68175 e LCP 4354). S. schoenii reduziu a severidade da doença em laranjas inoculadas com todos os fitopatógenos testados. Entre estes fitopatógenos, P. digitatum LCP4354 apresentou a maior virulência enquanto que P. digitatum LCP 68175 foi o mais suscetível à predação. A levedura foi capaz de permanecer viável, sem produzir lesões na superfície dos frutos por 21 dias. Outra característica desejável observada foi a ausência de produção de substâncias antagonistas. Sendo assim, este trabalho evidência o potencial de utilização da levedura S. schoenii em protocolos de controle biológico de doenças pós-colheita em laranjas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA