Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.272
Filtrar
1.
Front Plant Sci ; 15: 1398083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962246

RESUMO

Utilizing agricultural and industrial wastes, potent reservoirs of nutrients, for nourishing the soil and crops through composting embodies a sustainable approach to waste management and organic agriculture. To investigate this, a 2-year field experiment was conducted at ICAR-IARI, New Delhi, focusing on a pigeon pea-vegetable mustard-okra cropping system. Seven nutrient sources were tested, including a control (T1), 100% recommended dose of nitrogen (RDN) through farmyard manure (T2), 100% RDN through improved rice residue compost (T3), 100% RDN through a paddy husk ash (PHA)-based formulation (T4), 75% RDN through PHA-based formulation (T5), 100% RDN through a potato peel compost (PPC)-based formulation (T6), and 75% RDN through PPC-based formulation (T7). Employing a randomized block design with three replications, the results revealed that treatment T4 exhibited the significantly highest seed (1.89 ± 0.09 and 1.97 ± 0.12 t ha-1) and stover (7.83 ± 0.41 and 8.03 ± 0.58 t ha-1) yield of pigeon pea, leaf yield (81.57 ± 4.69 and 82.97 ± 4.17 t ha-1) of vegetable mustard, and fruit (13.54 ± 0.82 and 13.78 ± 0.81 t ha-1) and stover (21.64 ± 1.31 and 22.03 ± 1.30 t ha-1) yield of okra during both study years compared to the control (T1). Treatment T4 was on par with T2 and T6 for seed and stover yield in pigeon pea, as well as okra, and leaf yield in vegetable mustard over both years. Moreover, T4 demonstrated notable increase of 124.1% and 158.2% in NH4-N and NO3-N levels in the soil, respectively, over the control. The enhanced status of available nitrogen (N) and phosphorus (P) in the soil, coupled with increased soil organic carbon (0.41%), total bacteria population (21.1%), fungi (37.2%), actinomycetes (44.6%), and microbial biomass carbon (28.5%), further emphasized the positive impact of T4 compared to the control. Treatments T2 and T6 exhibited comparable outcomes to T4 concerning changes in available N, P, soil organic carbon, total bacteria population, fungi, actinomycetes, and microbial biomass carbon. In conclusion, treatments T4 and T6 emerge as viable sources of organic fertilizer, particularly in regions confronting farmyard manure shortages. These formulations offer substantial advantages, including enhanced yield, soil quality improvement, and efficient fertilizer utilization, thus contributing significantly to sustainable agricultural practices.

2.
BMC Microbiol ; 24(1): 255, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982358

RESUMO

BACKGROUND: Alternaria alternata is the primary pathogen of potato leaf spot disease, resulting in significant potato yield losses globally. Endophytic microorganism-based biological control, especially using microorganisms from host plants, has emerged as a promising and eco-friendly approach for managing plant diseases. Therefore, this study aimed to isolate, identify and characterize the endophytic fungi from healthy potato leaves which had great antifungal activity to the potato leaf spot pathogen of A. alternata in vitro and in vivo. RESULTS: An endophytic fungal strain SD1-4 was isolated from healthy potato leaves and was identified as Talaromyces muroii through morphological and sequencing analysis. The strain SD1-4 exhibited potent antifungal activity against the potato leaf spot pathogen A. alternata Lill, with a hyphal inhibition rate of 69.19%. Microscopic and scanning electron microscope observations revealed that the strain SD1-4 grew parallel to, coiled around, shrunk and deformed the mycelia of A. alternata Lill. Additionally, the enzyme activities of chitinase and ß-1, 3-glucanase significantly increased in the hyphae of A. alternata Lill when co-cultured with the strain SD1-4, indicating severe impairment of the cell wall function of A. alternata Lill. Furthermore, the mycelial growth and conidial germination of A. alternata Lill were significantly suppressed by the aseptic filtrate of the strain SD1-4, with inhibition rates of 79.00% and 80.67%, respectively. Decrease of leaf spot disease index from 78.36 to 37.03 was also observed in potato plants treated with the strain SD1-4, along with the significantly increased plant growth characters including plant height, root length, fresh weight, dry weight, chlorophyll content and photosynthetic rate of potato seedlings. CONCLUSION: The endophyte fungus of T. muroii SD1-4 isolated from healthy potato leaves in the present study showed high biocontrol potential against potato leaf spot disease caused by A. alternata via direct parasitism or antifungal metabolites, and had positive roles in promoting potato plant growth.


Assuntos
Alternaria , Endófitos , Doenças das Plantas , Folhas de Planta , Solanum tuberosum , Talaromyces , Alternaria/crescimento & desenvolvimento , Alternaria/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solanum tuberosum/microbiologia , Talaromyces/genética , Talaromyces/crescimento & desenvolvimento , Endófitos/fisiologia , Endófitos/isolamento & purificação , Endófitos/genética , Folhas de Planta/microbiologia , Hifas/crescimento & desenvolvimento , Antibiose , Quitinases/metabolismo , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos
3.
Am J Bot ; : e16365, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992900

RESUMO

PREMISE: The domestication of wild plant species can begin with gathering and transport of propagules by Indigenous peoples. The effect on genomic composition, especially in clonal, self-incompatible perennials would be instantaneous and drastic with respect to new, anthropogenic populations subsequently established. Reductions in genetic diversity and mating capability would be symptomatic and the presence of unique alleles and genetic sequences would reveal the origins and ancestry of populations associated with archaeological sites. The current distribution of the Four Corners potato, Solanum jamesii Torr. in the Southwestern USA, may thus reflect the early stages of a domestication process that began with tuber transport. METHODS: Herein genetic sequencing (GBS) data are used to further examine the hypothesis of domestication in this culturally significant species by sampling 25 archaeological and non-archaeological populations. RESULTS: Archaeological populations from Utah, Colorado and northern Arizona have lower levels of polymorphic loci, unique alleles, and heterozygosity than non-archaeological populations from the Mogollon region of central Arizona and New Mexico. Principle components analysis, Fst values, and structure analysis revealed that genetic relationships among archaeological populations did not correspond to geographic proximity. Populations in Escalante, Utah were related to those on the Mogollon Rim (400 km south) and had multiple origins and significant disjunctions with those populations in Bears Ears, Chaco Canyon, and Mesa Verde sites. CONCLUSIONS: Movement of tubers from the Mogollon region may have occurred many times and in multiple directions during the past, resulting in the complex genetic patterns seen in populations from across the Four Corners region.

4.
Sci Rep ; 14(1): 15547, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969662

RESUMO

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Assuntos
Aspergillus flavus , Endófitos , Controle Biológico de Vetores , Doenças das Plantas , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitologia , Solanum tuberosum/microbiologia , Animais , Endófitos/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Controle Biológico de Vetores/métodos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Raízes de Plantas/parasitologia , Raízes de Plantas/microbiologia , Antinematódeos/farmacologia , Antinematódeos/metabolismo , Trigonella/microbiologia
5.
Front Plant Sci ; 15: 1417204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978523

RESUMO

Growth-regulating factors (GRFs) are transcription factors that play a pivotal role in plant growth and development. This study identifies 12 Solanum tuberosum GRF transcription factors (StGRFs) and analyzes their physicochemical properties, phylogenetic relationships, gene structures and gene expression patterns using bioinformatics. The StGRFs exhibit a length range of 266 to 599 amino acids, with a molecular weight of 26.02 to 64.52 kDa. The majority of StGRFs possess three introns. The promoter regions contain a plethora of cis-acting elements related to plant growth and development, as well as environmental stress and hormone response. All the members of the StGRF family contain conserved WRC and QLQ domains, with the sequences of these two conserved domain modules exhibiting high levels of conservation. Transcriptomic data indicates that StGRFs play a significant role in the growth and development of stamens, roots, young tubers, and other tissues or organs in potatoes. Furthermore, a few StGRFs exhibit differential expression patterns in response to Phytophthora infestans, chemical elicitors, heat, salt, and drought stresses, as well as multiple hormone treatments. The results of the expression analysis indicate that StGRF1, StGRF2, StGRF5, StGRF7, StGRF10 and StGRF12 are involved in the process of tuber sprouting, while StGRF4 and StGRF9 may play a role in tuber dormancy. These findings offer valuable insights that can be used to investigate the roles of StGRFs during potato tuber dormancy and sprouting.

6.
J Environ Manage ; 366: 121759, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981257

RESUMO

The significance of integrating agricultural by-products such as paddy husk ash (PHA) and potato peels with organic fertilizers lies in enhancing soil fertility, increasing crop yields, and reducing reliance on traditional organic fertilizers like farmyard manure (FYM) or compost alone. Grounded in sustainable agriculture and nutrient management frameworks, this study examines the impact of diverse formulations derived from agricultural waste on productivity, nutrient efficiency, and profitability in a pigeon pea-vegetable mustard-okra cropping system. A two-year field experiment (2020-2022) at ICAR-IARI, New Delhi tested seven nutrient sources viz., (T1) control, (T2) 100% RDN through FYM, (T3) 100% RDN through improved RRC, (T4) 100% RDN through PHA based formulation, (T5) 75% RDN through PHA based formulation, (T6) 100% RDN through PPC based formulation and (T7) 75% RDN through PPC based formulation that were tested in RBD and replicated thrice. Treatment T4 had significant effect on seed yield of pigeon pea (1.89 ± 0.09 and 1.97 ± 0.12 t ha-1), leaf yield of vegetable mustard (81.57 ± 4.59 and 82.97 ± 4.17 t ha-1), and fruit yield of okra (13.54 ± 0.82 and 13.78 ± 0.81 t ha-1) grown in rotation, followed by treatment T6 and T2 during both the years respectively over control. Enhanced system uptake of N, P and K along with system gross and net returns in T4, showed increases of 78.9%, 83.8%, 72.4%, 54.4% and 56.8% in the first year and 77.5%, 80.8%, 77.7%, 54.8% and 57.4% in the second year, respectively, over control. Treatment T4 significantly improved apparent recovery by 66.3% and 69.2% in pigeon pea, 64.7% and 47.9% in vegetable mustard, and 72.7% and 79.4% in okra over T3, averaged across two years. Based on the above findings, (T4) 100% RDN through PHA-based formulation, and (T6) 100% RDN through PPC-based formulation can be recommended for areas with a shortage of FYM but availability of rice husk ash/potato peels for sustainable agricultural wastes and improved sustainability.

7.
Food Chem X ; 23: 101551, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974199

RESUMO

Sweet potatoes are rich in flavonoids and phenolic acids, showing incomparable nutritional and health value. In this investigation, we comprehensively analyzed the secondary metabolite profiles in the flesh of different-colored sweet potato flesh. We determined the metabolomic profiles of white sweet potato flesh (BS), orange sweet potato flesh (CS), and purple sweet potato flesh (ZS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CS vs. BS, ZS vs. BS, and ZS vs. CS comparisons identified a total of 4447 secondary metabolites, including 1540, 1949, and 1931 differentially accumulated metabolites. Among them, there were significant differences in flavonoids and phenolic acids. There were 20 flavonoids and 13 phenolic acids that were common differential metabolites among the three comparison groups. The accumulation of paeoniflorin-like and delphinidin-like compounds may be responsible for the purple coloration of sweet potato flesh. These findings provide new rationale and insights for the development of functional foods for sweet potatoes. List of compounds: Kaempferol (PubChem CID: 5280863); Peonidin 3-(6"-p-coumarylglucoside) (PubChem CID: 44256849); Swerchirin (PubChem CID: 5281660); Trilobatin (PubChem CID: 6451798); 3-Geranyl-4-hydroxybenzoate (PubChem CID: 54730540); Eupatorin (PubChem CID: 97214); Icaritin (PubChem CID: 5318980); Isorhamnetin (PubChem CID: 5281654); Glucoliquiritin apioside (PubChem CID: 74819335); Brazilin (PubChem CID: 73384).

8.
Food Chem X ; 23: 101462, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974195

RESUMO

Purple-fleshed sweet potato (PFSP) and yellow-fleshed sweet potato (YFSP) are crops highly valued for their nutritional benefits and rich bioactive compounds. These compounds include carotenoids, flavonoids (including anthocyanins), and phenolic acids etc. which are present in both the leaves and roots of these sweet potatoes. PFSP and YFSP offer numerous health benefits, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. The antioxidant activity of these sweet potatoes holds significant potential for various industries, including food, pharmaceutical, and cosmetics. However, a challenge in utilizing PFSP and YFSP is their susceptibility to rapid oxidation and color fading during processing and storage. To address this issue and enhance the nutritional value and shelf life of food products, researchers have explored preservation methods such as co-pigmentation and encapsulation. While YFSP has not been extensively studied, this review provides a comprehensive summary of the nutritional value, phytochemical composition, health benefits, stabilization techniques for phytochemical, and industrial applications of both PFSP and YFSP in the food industry. Additionally, the comparison between PFSP and YFSP highlights their similarities and differences, shedding light on their potential uses and benefits in various food products.

9.
Front Plant Sci ; 15: 1413755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974976

RESUMO

Phosphorus deficiency and aluminum toxicity in acidic soils are important factors that limit crop yield. To further explore this issue, we identified 18 members of the StPHR gene family in the potato genome in this study. Through bioinformatics analysis, we found that the StPHR1 gene, an important member of this family, exhibited high expression levels in potato roots, particularly under conditions of phosphorus deficiency and aluminum toxicity stress. This suggested that the StPHR1 gene may play a crucial regulatory role in potato's resistance to phosphorus deficiency and aluminum toxicity. To validate this hypothesis, we conducted a series of experiments on the StPHR1 gene, including subcellular localization, GUS staining for tissue expression, heterologous overexpression, yeast two-hybrid hybridization, and bimolecular fluorescence complementation (BiFC). The results demonstrated that the StPHR1 gene is highly conserved in plants and is localized in the nucleus of potato cells. The heterologous overexpression of the gene in Arabidopsis plants resulted in a growth phenotype that exhibited resistance to both aluminum toxicity and phosphorus deficiency. Moreover, the heterologous overexpressing plants showed reduced aluminum content in the root system compared to the control group. Furthermore, we also identified an interaction between StPHR1 and StALMT6. These results highlight the potential application of regulating the expression of the StPHR1 gene in potato production to enhance its adaptation to the dual stress of phosphorus deficiency and high aluminum toxicity in acidic soils.

10.
Plant Physiol Biochem ; 214: 108917, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38976941

RESUMO

Sweet potato [Ipomoea batatas (L.) Lam], the crop with the seventh highest annual production globally, is susceptible to various adverse environmental influences, and the study of stress-resistant genes is important for improving its tolerance to abiotic stress. The enzyme trehalose-6-phosphate synthase (TPS) is indispensable in the one pathway for synthesizing trehalose in plants. TPS is known to participate in stress response in plants, but information on TPS in sweet potato is limited. This study produced the N-terminal truncated IbTPS1 gene (△NIbTPS1) overexpression lines of Arabidopsis thaliana and sweet potato. Following salt and mannitol-induced drought treatment, the germination rate, root elongation, and fresh weight of the transgenic A. thaliana were significantly higher than that in the wild type. Overexpression of △NIbTPS1 elevated the photosynthetic efficiency (Fv/Fm) and the activity of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase in sweet potato during drought and salt treatments, while reducing malondialdehyde and O2∙- contents, although expression of the trehalose-6-phosphate phosphatase gene IbTPP and trehalose concentrations were not affected. Thus, overexpressing the △NIbTPS1 gene can improve the stress tolerance of sweet potato to drought and salt by enhancing the photosynthetic efficiency and antioxidative enzyme system. These results will contribute to understand the functions of the △NIbTPS1 gene and trehalose in the response mechanism of higher plants to abiotic stress.

11.
Heliyon ; 10(12): e32694, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988530

RESUMO

Soil salinity is a major threat hindering the optimum growth, yield, and nutritional value of potato. The application of organic composts and micronutrients can effectively ameliorate the salinity-deleterious effects on potato growth and productivity. Herein, the combined effect of banana and soybean composts (BCo and SCo) application alongside foliar supplementation of boron (B), selenium (Se), cobalt (Co), and titanium (Ti) were investigated for improving growth, physiology, and agronomical attributes of potato plants grown in saline alluvial soil. Salinity stress significantly reduced biomass accumulation, chlorophyll content, NPK concentrations, yield attributes, and tuber quality, while inducing malondialdehyde and antioxidant enzymes. Co-application of either BCo or SCo with trace elements markedly alleviated salinity-adverse effects on potato growth and productivity. These promotive effects were also associated with a significant reduction in malondialdehyde content and activities of peroxidase and superoxide dismutase enzymes. The co-application of BCo and B/Se was the most effective among other treatments. Principle component analysis and heatmap also highlighted the efficacy of the co-application of organic composts and micronutrients in improving the salinity tolerance of potato plants. In essence, the co-application of BCo with B and Se can be adopted as a promising strategy for enhancing the productivity of potato crops in salt-affected soils.

12.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990942

RESUMO

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Assuntos
Besouros , Lipogênese , Estações do Ano , Animais , Lipogênese/fisiologia , Besouros/metabolismo , Besouros/genética , Besouros/fisiologia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Diapausa de Inseto , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
13.
Int J Biol Macromol ; : 133769, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992533

RESUMO

This work aimed to develop and characterize a novel bi-layer film (BIF) for monitoring the freshness of salmon. The indicator layer consists of carrageenan (Car), pectin (PEC) and purple sweet potato anthocyanin (PSPA), and the antibacterial layer consists of Car and magnolol (Mag). The results showed that the Car/Mag2 had the optimal water resistance: the static water contact angle of 80.36 ±â€¯0.92°, moisture content of 31.38 ±â€¯0.86 %, swelling degree of 92.96 ±â€¯0.46 %, and water solubility of 40.08 ±â€¯1.17 %, and showed excellent antibacterial properties against E. coli and S. aureus with antibacterial rate of 86.13 % ±â€¯0.10 % and 97.53 % ±â€¯0.02 %, respectively. Then BIFs with different PSPA concentration were tested. The morphology, mechanical and water vapor properties (WVP) of the BIFs were studied, and its application in salmon preservation was evaluated. The mechanical properties and WVP test results showed that the BIF0.2 had the optimal Tensile strength (TS) and WVP values. The BIFs showed distinguishable color changes between the pH ranges of 3-10. The shelf life of salmon packaged by BIF0.2 was prolonged by 2 days. Moreover, the BIF0.2 was able to effectively monitor salmon freshness. In conclusion, the BIF has great potential for monitoring salmon meat freshness.

15.
PeerJ ; 12: e17518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952990

RESUMO

Potato farming is a vital component of food security and the economic stability especially in the under developing countries but it faces many challenges in production, blackleg disease caused by Pectobacterium atrosepticum (Pa) is one of the main reason for damaging crop yield of the potato. Effective management strategies are essential to control these losses and to get sustainable potato crop yield. This study was focused on characterizing the Pa and the investigating new chemical options for its management. The research was involved a systematic survey across the three district of Punjab, Pakistan (Khanewal, Okara, and Multan) to collect samples exhibiting the black leg symptoms. These samples were analyzed in the laboratory where gram-negative bacteria were isolated and identified through biochemical and pathogenicity tests for Pa. DNA sequencing further confirmed these isolates of Pa strains. Six different chemicals were tested to control blackleg problem in both vitro and vivo at different concentrations. In vitro experiment, Cordate demonstrated the highest efficacy with a maximum inhibition zones of 17.139 mm, followed by Air One (13.778 mm), Profiler (10.167 mm), Blue Copper (7.7778 mm), Spot Fix (7.6689 mm), and Strider (7.0667 mm). In vivo, Cordate maintained its effectiveness with the lowest disease incidence of 14.76%, followed by Blue Copper (17.49%), Air One (16.98%), Spot Fix (20.67%), Profiler (21.45%), Strider (24.99%), and the control group (43.00%). The results highlight Cordate's potential as a most effective chemical against Pa, offering promising role for managing blackleg disease in potato and to improve overall productivity.


Assuntos
Pectobacterium , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Pectobacterium/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Paquistão
16.
J Agric Food Chem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970497

RESUMO

Potato (Solanum tuberosum) is a major agricultural crop cultivated worldwide. To meet market demand, breeding programs focus on enhancing important agricultural traits such as disease resistance and improvement of tuber palatability. However, while potato tubers get a lot of attention from research, potato berries are mostly overlooked due to their level of toxicity and lack of usefulness for the food production sector. Generally, they remain unused in the production fields after harvesting the tuber. These berries are toxic due to high levels of glycoalkaloids, which might confer some interesting bioactivities. Berries of various solanaceous species contain bioactive secondary metabolites, suggesting that potato berries might contain similarly valuable metabolites. Therefore, possible applications of potato berries, e.g., in the protection of plants against pests and pathogens, as well as the medical exploitation of their anti-inflammatory, anticarcinogenic, and antifungal properties, are plausible. The presence of valuable compounds in potato berries could also contribute to the bioeconomy by providing a novel use for otherwise discarded agricultural side streams. Here we review the potential use of these berries for the extraction of compounds that can be exploited to produce pharmaceuticals and plant protection products.

17.
Front Plant Sci ; 15: 1353024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903445

RESUMO

P-type ATPase family members play important roles in plant growth and development and are involved in plant resistance to various biotic and abiotic factors. Extensive studies have been conducted on the P-type ATPase gene families in Arabidopsis thaliana and rice but our understanding in potato remains relatively limited. Therefore, this study aimed to screen and analyze 48 P-type ATPase genes from the potato (Solanum tuberosum L.) genome database at the genome-wide level. Potato P-type ATPase genes were categorized into five subgroups based on the phylogenetic classification of the reported species. Additionally, several bioinformatic analyses, including gene structure analysis, chromosomal position analysis, and identification of conserved motifs and promoter cis-acting elements, were performed. Interestingly, the plasma membrane H+-ATPase (PM H+-ATPase) genes of one of the P3 subgroups showed differential expression in different tissues of potato. Specifically, PHA2, PHA3, and PHA7 were highly expressed in the roots, whereas PHA8 was expressed in potatoes only under stress. Furthermore, the small peptide Pep13 inhibited the expression of PHA1, PHA2, PHA3, and PHA7 in potato roots. Transgenic plants heterologously overexpressing PHA2 displayed a growth phenotype sensitive to Pep13 compared with wild-type plants. Further analysis revealed that reducing potato PM H+-ATPase enzyme activity enhanced resistance to Pep13, indicating the involvement of PM H+-ATPase in the physiological process of potato late blight and the enhancement of plant disease resistance. This study confirms the critical role of potato PHA2 in resistance to Pep13.

18.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893561

RESUMO

The application of chemical operations in food processing, in which pure chemical compounds are used to modify food ingredients, often raises social concerns. One of the most frequently modified dietary substances is starch, e.g., E1401-E1404, E1412-E1414, E1420, E1422, E1440, E1442, and E1450-E1452. An alternative solution to chemical treatments seems to be the use of raw materials naturally containing substrates applied for starch modification. Heating starch with a lemon juice concentrate can be considered a novel and effective method for producing starch citrate, which is part of the so-called "green chemistry". The modified preparations obtained as a result of potato starch esterification with natural lemon juice had a comparable degree of esterification to that of the esters produced with pure citric acid. In addition, the use of the juice doubled their resistance to amylolytic enzymes compared to the preparations made with pure acid. Replacing citric acid with lemon juice can facilitate the esterification process, and the analyzed properties of both types of modified preparations indicate that starch esters produced with pure citric acid can be successfully replaced by those produced using natural lemon juice, which may increase the social acceptance of these modified preparations.


Assuntos
Ácido Cítrico , Citrus , Sucos de Frutas e Vegetais , Solanum tuberosum , Amido , Esterificação , Ácido Cítrico/química , Amido/química , Citrus/química , Sucos de Frutas e Vegetais/análise , Solanum tuberosum/química , Manipulação de Alimentos/métodos
19.
Materials (Basel) ; 17(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893945

RESUMO

This paper presents research results on biocomposites made from a combination of extruded apple pomace (EAP) and potato starch (SP). The aim of this work was to investigate the basic properties of biocomposites obtained from extruded apple pomace reinforced with potato starch. The products were manufactured by hot pressing using a hydraulic press with a mould for producing samples. The prepared biocomposites were subjected to strength tests, surface wettability was determined, and a colour analysis was carried out. A thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and cross-sectioning observed in a scanning electron microscope (SEM) were also performed. The obtained test results showed that the combination of apple pomace (EAP) and starch (SP) enabled the production of compact biocomposite materials. At the same time, it was found that each increase in the share of starch in the mixture for producing biocomposites increased the strength parameters of the obtained materials. With the highest share of starch in the mixture, 40%, and a raw material moisture content of 14%, the material had the best strength parameters and was even characterised by hydrophobic properties. It was also found that materials with a high content of starch are characterised by increased temperature resistance. The analysis of SEM microscopic photos showed well-glued particles of apple pomace, pectin, and gelatinised starch and a smooth external structure of the samples. Research and analyses have shown that apple pomace reinforced only with the addition of starch can be a promising raw material for the production of simple, biodegradable biocomposite materials.

20.
Foods ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38890887

RESUMO

This study investigates the applicability of the Peleg model to the osmotic dehydration of various sweet potato variety samples in sugar beet molasses, addressing a notable gap in the existing literature. The osmotic dehydration was performed using an 80% sugar beet molasses solution at temperatures of 20 °C, 35 °C, and 50 °C for periods of 1, 3, and 5 h. The sample-to-solution ratio was 1:5. The objectives encompassed evaluating the Peleg equation's suitability for modeling mass transfer during osmotic dehydration and determining equilibrium water and solid contents at various temperatures. With its modified equation, the Peleg model accurately described water loss and solid gain dynamics during osmotic treatment, as evidenced by a high coefficient of determination value (r2) ranging from 0.990 to 1.000. Analysis of Peleg constants revealed temperature and concentration dependencies, aligning with previous observations. The Guggenheim, Anderson, and de Boer (GAB) model was employed to characterize sorption isotherms, yielding coefficients comparable to prior studies. Effective moisture diffusivity and activation energy calculations further elucidated the drying kinetics, with effective moisture diffusivity values ranging from 1.85 × 10-8 to 4.83 × 10-8 m2/s and activation energy between 7.096 and 16.652 kJ/mol. These findings contribute to understanding the complex kinetics of osmotic dehydration and provide insights into the modeling and optimization of dehydration processes for sweet potato samples, with implications for food processing and preservation methodologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...