Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 1): 132410, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600016

RESUMO

Widespread intertidal mussels are exposed to a variety of natural and anthropogenic stressors. Even so, our understanding of the combined influence of stressors such as predation risk and ocean acidification (OA) on these species remains limited. This study examined the response of the purple mussel (Perumytilus purpuratus), a species distributed along Pacific southeastern rocky shores, to the effects of predation risk and OA. Using a laboratory 2 × 2 cross design, purple mussels were either devoid or exposed to predator cues from the muricid snail Acanthina monodon, while simultaneously exposing them to current (500 ppm) or projected OA conditions (1500 ppm). The response of purple mussels to these factors was assessed using growth, calcification, clearance, and metabolic rates, in addition to byssus production. After 60 d, the presence of predator cues reduced mussel growth in width and length, and in the latter case, OA enhanced this response making the effects of predator cues more severe. Calcification rates were driven by the interaction between the two stressors, whereas clearance rates increased only in response to OA, likely explaining some of the growth results. Mussel byssus production also increased with pCO2 but interacted with predation risk: in the absence of predator cues, byssus production increased with OA. These results suggest that projected levels of OA may alter and in some cases prevail over the natural response of purple mussels to predation risk. Considering the role played by this mussel as a dominant competitor and ecosystem engineer in rocky shores, these results have community-wide implications.


Assuntos
Bivalves , Ecossistema , Animais , Efeitos Antropogênicos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Comportamento Predatório , Água do Mar , Caramujos
2.
Am Nat ; 189(5): 490-500, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28410025

RESUMO

Predators control prey populations and influence communities and the functioning of ecosystems through a combination of consumptive and nonconsumptive effects. These effects can be locally confined to one ecosystem but can also be extended to neighboring ecosystems. In this study, we investigated the nonconsumptive effects of terrestrial avian predators on the communities of aquatic invertebrates inhabiting bromeliads and on the functioning of these natural ecosystems. Bromeliads with stuffed birds placed nearby showed a decrease in aquatic damselfly larvae abundance and biomass, and we can infer that these changes were caused by antipredator responses. These larvae, which are top predators in bromeliad ecosystems, changed the composition of the entire aquatic invertebrate community. While total species richness, mesopredator richness, and shredder abundance increased in the presence of birds, scraper biomass decreased, possibly as a consequence of the increase in mesopredator richness. High scraper biomass in the absence of birds may have accelerated detrital decomposition, making more nutrients available for bromeliads, which grew more. These results show that nonconsumptive effects triggered by terrestrial predators can cascade down to lower trophic levels and dramatically affect the functioning of aquatic ecosystems, which can in turn alter nutrient provision to terrestrial ecosystems.


Assuntos
Aves/fisiologia , Ecossistema , Cadeia Alimentar , Invertebrados/fisiologia , Comportamento Predatório , Animais , Organismos Aquáticos , Brasil , Bromeliaceae , Medo , Invertebrados/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Dinâmica Populacional
3.
J Exp Biol ; 216(Pt 16): 3132-42, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23619409

RESUMO

Fish and other aquatic vertebrates use their mechanosensory lateral line to detect objects and motion in their immediate environment. Differences in lateral line morphology have been extensively characterized among species; however, intraspecific variation remains largely unexplored. In addition, little is known about how environmental factors modify development of lateral line morphology. Predation is one environmental factor that can act both as a selective pressure causing genetic differences between populations, and as a cue during development to induce plastic changes. Here, we test whether variation in the risk of predation within and among populations of Trinidadian guppies (Poecilia reticulata) influences lateral line morphology. We compared neuromast arrangement in wild-caught guppies from distinct high- and low-predation population pairs to examine patterns associated with differences in predation pressure. To distinguish genetic and environmental influences, we compared neuromast arrangement in guppies from different source populations reared with and without exposure to predator chemical cues. We found that the distribution of neuromasts across the body varies between populations based on both genetic and environmental factors. To the best of our knowledge, this study is the first to demonstrate variation in lateral line morphology based on environmental exposure to an ecologically relevant stimulus.


Assuntos
Meio Ambiente , Sistema da Linha Lateral/anatomia & histologia , Poecilia/anatomia & histologia , Poecilia/genética , Animais , Animais Selvagens/anatomia & histologia , Animais Selvagens/genética , Contagem de Células , Feminino , Laboratórios , Sistema da Linha Lateral/ultraestrutura , Masculino , Neurônios/ultraestrutura , Comportamento Predatório , Trinidad e Tobago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA