Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 10: 276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445737

RESUMO

Action update, substituting a prepotent behavior with a new action, allows the organism to counteract surprising environmental demands. However, action update fails when the organism is uncertain about when to release the substituting behavior, when it faces temporal uncertainty. Predictive coding states that accurate perception demands minimization of precise prediction errors. Activity of the right anterior insula (rAI) is associated with temporal uncertainty. Therefore, we hypothesize that temporal uncertainty during action update would cause the AI to decrease the sensitivity to ascending prediction errors. Moreover, action update requires response inhibition which recruits the frontostriatal indirect pathway associated with motor control. Therefore, we also hypothesize that temporal estimation errors modulate frontostriatal connections. To test these hypotheses, we collected fMRI data when participants performed an action-update paradigm within the context of temporal estimation. We fit dynamic causal models to the imaging data. Competing models comprised the inferior occipital gyrus (IOG), right supramarginal gyrus (rSMG), rAI, right presupplementary motor area (rPreSMA), and the right striatum (rSTR). The winning model showed that temporal uncertainty drove activity into the rAI and decreased insular sensitivity to ascending prediction errors, as shown by weak connectivity strength of rSMG→rAI connections. Moreover, temporal estimation errors weakened rPreSMA→rSTR connections and also modulated rAI→rSTR connections, causing the disruption of action update. Results provide information about the neurophysiological implementation of the so-called horse-race model of action control. We suggest that, contrary to what might be believed, unsuccessful action update could be a homeostatic process that represents a Bayes optimal encoding of uncertainty.

2.
Anal Chim Acta ; 903: 51-60, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26709298

RESUMO

Most of the current expressions used to calculate figures of merit in multivariate calibration have been derived assuming independent and identically distributed (iid) measurement errors. However, it is well known that this condition is not always valid for real data sets, where the existence of many external factors can lead to correlated and/or heteroscedastic noise structures. In this report, the influence of the deviations from the classical iid paradigm is analyzed in the context of error propagation theory. New expressions have been derived to calculate sample dependent prediction standard errors under different scenarios. These expressions allow for a quantitative study of the influence of the different sources of instrumental error affecting the system under analysis. Significant differences are observed when the prediction error is estimated in each of the studied scenarios using the most popular first-order multivariate algorithms, under both simulated and experimental conditions.

3.
Exp Psychol ; 63(6): 333-342, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28059031

RESUMO

The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.


Assuntos
Cognição/fisiologia , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Percepção do Tempo/fisiologia , Teorema de Bayes , Feminino , Humanos , Masculino , Memória/fisiologia , Memória de Curto Prazo/fisiologia , Adulto Jovem
4.
Front Psychol ; 6: 1185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379568

RESUMO

We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA